THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Познакомившись с понятием натуральные числа и основными арифметическими действиями над ними, можно перейти к следующему виду чисел.

Целые числа Z получают путем объединения натуральных чисел с множеством отрицательных и нулем. На письме это обозначается таким образом: Z = {... -2, -1, 0, 1, 2, ...}.

Из этого следует, что целые числа замкнуты относительно сложения, вычитания и умножения.

Точное определение звучит так: множество целых чисел Z = {... -2, -1, 0, 1, 2, ...} определяется как замыкание множества натуральных чисел N относительно арифметических операций сложения (+) и вычитания (-). Следовательно, сумма, разность и произведение двух целых чисел дают целые числа .

Целое число состоит из положительных натуральных чисел (1, 2, 3) и чисел вида -n и числа ноль.

Отрицательные числа впервые введены в математический тезаурус Михаэлем Штифелем в книге «Полная арифметика», написанной в 1544 году.

К основным алгебраическим свойствам сложения и умножения любых целых чисел относятся:

Замкнутость: при сложении - a + b = целое, при умножении a × b = целое;
Ассоциативность: при сложении a + (b + c) = (a + b) + c, при умножении a × (b × c) = (a × b) × c;
Коммутативность: при сложении a + b = b + a, при умножении a × b = b × a
Нейтральный эелемент: при сложении a + 0 = a; при умножении a × 1 = a;
Противоположный элемент: при сложении a + (−a) = 0; при умножении a × 1/a = 1;
Дистрибутивность умножения относительно сложения: a × (b + c) = (a × b) + (a × c)
Первые пять вышеперечисленных свойств сложения целых чисел, свидетельствуют о том, что Z является циклической группой. Это следует из того, что каждый ненулевой элемент Z может быть записан в виде конечной суммы 1 + 1 + ... 1 или (−1) + (−1) + ... + (−1). Таким образом, Z является единственной бесконечной циклической группой по сложению по причине того, что любая бесконечная циклическая группа подобна группе (Z, +).

Первые четыре свойства умножения показывают то, что Z не является группой по умножению, и, следовательно, не является полем. Наименьшее поле, состоящее из целых чисел - это множество рациональных чисел Q.

Операция обычного деления для множества целых чисел не определена. Однако установлено так называемое деление с остатком. Таким образом, для любых целых чисел a и b, b <> 0 существует один единственный набор целых чисел q и r, где a = b*q + r и, где |b| - абсолютная величина (модуль) числа b. То есть, a - делимое, b - делитель, q - частное, r - остаток. На основе деления с остатком разработан алгоритм Евклида нахождения наибольшего общего делителя двух целых чисел.

Положительным называют целое число в том случае, если оно больше нуля, отрицательным - если меньше нуля.

Кстати сказать, что нуль не является положительным или отрицательным.

Для любых целых чисел справедливы следующие соотношения:

если a < b и c < d, тогда a + c < b + d.
если a < b и 0 < c, тогда ac < bc. (Отсюда следует, что если c < 0, то ac > bc.)
Целые числа играют основополагающую роль во всех основных языках программирования. В настоящее время разрабатываются теоретические модели цифровых компьютеров, которые будут иметь потенциально бесконечное, но счетное пространство.

К целым числам относятся натуральные числа, ноль, а также числа, противоположные натуральным.

Натуральные числа — это положительные целые числа.

К примеру: 1, 3, 7, 19, 23 и т.д. Такие числа мы используем для подсчета (на столе лежит 5 яблок, у машины 4 колеса и др.)

Латинской буквой \mathbb{N} — обозначается множество натуральных чисел .

К натуральным числам нельзя отнести отрицательные (у стула не может быть отрицательное количество ножек) и дробные числа (Иван не мог продать 3,5 велосипеда).

Числами, противоположными натуральным, являются отрицательные целые числа: −8, −148, −981, … .

Арифметические действия с целыми числами

Что можно делать с целыми числами? Их можно перемножать, складывать и вычитать друг из друга. Разберем каждую операцию на конкретном примере.

Сложение целых чисел

Два целых числа с одинаковыми знаками складываются следующим образом: производится сложение модулей этих чисел и перед полученной суммой ставится итоговый знак:

(+11) + (+9) = +20

Вычитание целых чисел

Два целых числа с разными знаками складываются следующим образом: из модуля большего числа вычитается модуль меньшего и перед полученным ответом ставят знак большего по модулю числа:

(-7) + (+8) = +1

Умножение целых чисел

Чтобы умножить одно целое число на другое нужно выполнить перемножение модулей этих чисел и поставить перед полученным ответом знак «+ », если исходные числа были с одинаковыми знаками, и знак «− », если исходные числа были с разными знаками:

(-5) \cdot (+3) = -15

(-3) \cdot (-4) = +12

Следует запомнить следующее правило перемножения целых чисел :

+ \cdot + = +

+ \cdot - = -

- \cdot + = -

- \cdot - = +

Существует правило перемножения нескольких целых чисел. Запомним его:

Знак произведения будет «+ », если количество множителей с отрицательным знаком четное и «− », если количество множителей с отрицательным знаком нечетное.

(-5) \cdot (-4) \cdot (+1) \cdot (+6) \cdot (+1) = +120

Деление целых чисел

Деление двух целых чисел производится следующим образом: модуль одного числа делят на модуль другого и если знаки чисел одинаковые, то перед полученным частным ставят знак «+ », а если знаки исходных чисел разные, то ставится знак «− ».

(-25) : (+5) = -5

Свойства сложения и умножения целых чисел

Разберем основные свойства сложения и умножения для любых целых чисел a , b и c :

  1. a + b = b + a - переместительное свойство сложения;
  2. (a + b) + c = a + (b + c) - сочетательное свойство сложения;
  3. a \cdot b = b \cdot a - переместительное свойство умножения;
  4. (a \cdot c) \cdot b = a \cdot (b \cdot c) - сочетательное свойства умножения;
  5. a \cdot (b \cdot c) = a \cdot b + a \cdot c - распределительное свойство умножения.

Натуральные числа

Натуральные числа определение - это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица - это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с - это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе - нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с - натуральное число, то это значит, что a делится на b нацело. В этом примере a - делимое, b - делитель, c - частное.

Делитель натурального числа - это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

(a + b) + c = a + (b + c);

переместительное свойство умножения

сочетательное свойство умножения

(ab) c = a (bc);

распределительное свойство умножения

A (b + c) = ab + ac;

Целые числа

Целые числа - это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным - это целые отрицательные числа, например:

1; -2; -3; -4;...

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа - это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

1,(0); 3,(6); 0,(0);...

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера.

В данной статье определим множество целых чисел, рассмотрим, какие целые называются положительными, а какие отрицательными. Также покажем, как целые числа используются для описания изменения некоторых величин. Начнем с определения и примеров целых чисел.

Yandex.RTB R-A-339285-1

Целые числа. Определение, примеры

Вначале вспомним про натуральные числа ℕ . Само название говорит о том, что это такие числа, которые естественно использовались для счета с незапамятных времен. Для того, чтобы охватить понятие целых чисел, нам нужно расширить определение натуральных чисел.

Определение 1. Целые числа

Целые числа - это натуральные числа, числа, противоположные им, и число нуль.

Множество целых чисел обозначается буквой ℤ .

Множество натуральных чисел ℕ - подмножество целых чисел ℤ . Любое натуральное число является целым, но не любое целое число является натуральным.

Из определения следует, что целым является любое из чисел 1 , 2 , 3 . . , число 0 , а также числа - 1 , - 2 , - 3 , . .

В соответствии с этим, приведем примеры. Числа 39 , - 589 , 10000000 , - 1596 , 0 являются целыми числами.

Пусть координатная прямая проведена горизонтально и направлена вправо. Взглянем на нее, чтобы наглядно представить расположение целых чисел на прямой.

Началу отсчета на координатной прямой соответствует число 0 , а точкам, лежащим по обе стороны от нуля соответствуют положительные и отрицательные целые числа. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, отложив от начала координат некоторое количество единичных отрезков.

Положительные и отрицательные целые числа

Из всех целых чисел логично выделить положительные и отрицательные целые числа. Дадим их определения.

Определение 2. Положительные целые числа

Положительные целые числа - это целые числа со знаком "плюс".

Например, число 7 - целое число со знаком плюс, то есть положительное целое число. На координатной прямой это число лежит справа от точки отсчета, за которую принято число 0 . Другие примеры положительных целых чисел: 12 , 502 , 42 , 33 , 100500 .

Определение 3. Отрицательные целые числа

Отрицательные целые числа - это целые числа со знаком "минус".

Примеры целых отрицательных чисел: - 528 , - 2568 , - 1 .

Число 0 разделяет положительные и отрицательные целые числа и само не является ни положительным, ни отрицательным.

Любое число, противоположное положительному целому числу, в силу определения, является отрицательным целым числом. Справедливо и обратное. Число, обратное любому отрицательному целому числу, есть положительное целое число.

Можно дать другие формулировки определений отрицательных и положительных целых чисел, используя их сравнение с нулем.

Определение 4. Положительные целые числа

Положительные целые числа - это целые числа, которые больше нуля.

Определение 5. Отрицательные целые числа

Отрицательные целые числа - это целые числа, которые меньше нуля.

Соответственно, положительные числа лежат правее начала отсчета на координатной прямой, а отрицательные целые числа находятся левее от нуля.

Ранее мы уже говорили, что натуральные числа - это подмножество целых. Уточним этот момент. Множество натуральных чисел составляют целые положительные числа. В свою очередь, множество отрицательных целых чисел является множеством чисел, противоположных натуральным.

Важно!

Любое натуральное число можно назвать целым, но любое целое число нельзя назвать натуральным. Отвечая на вопрос, являются ли являются ли отрицательные числа натуральными, нужно смело говорить - нет, не являются.

Неположительные и неотрицательные целые числа

Дадим определения.

Определение 6. Неотрицательные целые числа

Неотрицательные целые числа - это положительные целые числа и число нуль.

Определение 7. Неположительные целые числа

Неположительные целые числа - это отрицательные целые числа и число нуль.

Как видим, число нуль не является ни положительным, ни отрицательным.

Примеры неотрицательных целых чисел: 52 , 128 , 0 .

Примеры неположительных целых чисел: - 52 , - 128 , 0 .

Неотрицательное число - это число, большее или равное нулю. Соответственно, неположительное целое число - это число, меньшее или равное нулю.

Термины "неположительное число" и "неотрицательное число" используются для краткости. Например, вместо того, чтобы говорить, что число a - целое число, которое больше или равно нулю, можно сказать: a - целое неотрицательное число.

Использование целых чисел при описании изменения величин

Для чего используются целые числа? В первую очередь, с их помощью удобно описывать и определять изменение количества каких-либо предметов. Приведем пример.

Пусть на складе хранится какое-то количество коленвалов. Если на склад привезут еще 500 коленвалов, то их количество увеличится. Число 500 как раз и выражает изменение (увеличение) количества деталей. Если потом со склада увезут 200 деталей, то это число также будет характеризовать изменение количества коленвалов. На этот раз, в сторону уменьшения.

Если же со склада ничего не будут забирать, и ничего не будут привозить, то число 0 укажет на неизменность количества деталей.

Очевидное удобство использования целых чисел в отличие от натуральных в том, что их знак явно указывает на направление изменения величины (увеличение или убывание).

Понижение температуры на 30 градусов можно охарактеризовать отрицательным числом - 30 , а увеличение на 2 градуса - положительным целым числом 2 .

Приведем еще один пример с использованием целых чисел. На этот раз, представим, что мы должны отдать кому-то 5 монет. Тогда, можно сказать, что мы обладаем - 5 монетами. Число 5 описывает размер долга, а знак "минус" говорит о том, что мы должны отдать монеты.

Если мы должны 2 монеты одному человеку, а 3 - другому, то общий долг (5 монет) можно вычислить по правилу сложения отрицательных чисел:

2 + (- 3) = - 5

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

For3. < B$$). Вывести в порядке убывания все целые числа, расположенные между $$A$$ и $$B$$ (не включая числа $$A$$ и $$B$$), а также количество $$N$$ этих чисел.

For4. Дано вещественное число - цена 1 кг конфет. Вывести стоимость 1, 2, …, 10 кг конфет.

For5. Дано вещественное число - цена 1 кг конфет. Вывести стоимость 0.1, 0.2, …, 1 кг конфет.

For6. Дано вещественное число - цена 1 кг конфет. Вывести стоимость 1.2, 1.4, …, 2 кг конфет.

For7. Даны два целых числа $$A$$ и $$B$$ ($$A < B$$). Найти сумму всех целых чисел от $$A$$ до $$B$$ включительно.

For8. Даны два целых числа $$A$$ и $$B$$ ($$A < B$$). Найти произведение всех целых чисел от $$A$$ до $$B$$ включительно.

For9. Даны два целых числа $$A$$ и $$B$$ ($$A < B$$). Найти сумму квадратов всех целых чисел от $$A$$ до $$B$$ включительно.

For10. Дано целое число $$N$$ ($$> 0$$). Найти сумму $$1 + 1/2 + 1/3 + … + 1/N$$ (вещественное число).

For11. Дано целое число $$N$$ ($$> 0$$). Найти сумму $$N^2 + (N + 1)^2 + (N + 2)^2 +…+ (2*N)^2$$ (целое число).

For12. Дано целое число $$N$$ ($$> 0$$). Найти произведение $$1.1 *1.2 * 1.3 *…$$ ($$N$$ сомножителей).

For13. Дано целое число $$N$$ ($$> 0$$). Найти значение выражения $$1.1 — 1.2 + 1.3 — …$$ ($$N$$ слагаемых, знаки чередуются). Условный оператор не использовать.

For14. Дано целое число $$N$$ ($$> 0$$). Найти квадрат данного числа, используя для его вычисления следующую формулу: $$N^2 = 1 + 3 + 5 + … + (2*N — 1)$$. После добавления к сумме каждого слагаемого выводить текущее значение суммы (в результате будут выведены квадраты всех целых чисел от 1 до $$N$$).

For15. Дано вещественное число $$A$$ и целое число $$N$$ ($$> 0$$). Найти $$A$$ в степени $$N$$: $$A^N = A*A*… *A$$ (числа $$A$$ перемножаются $$N$$ раз).

For16. Дано вещественное число $$A$$ и целое число $$N$$ ($$> 0$$). Используя один цикл, вывести все целые степени числа $$A$$ от $$1$$ до $$N$$.

For17. Дано вещественное число $$A$$ и целое число $$N$$ ($$> 0$$). Используя один цикл, найти сумму $$1 + A + A^2 + A^3 + … + A^N$$.

For18. Дано вещественное число $$A$$ и целое число $$N$$ ($$> 0$$). Используя один цикл, найти значение выражения $$1 — A + A^2 — A^3 + … + (-1)^N*A^N$$. Условный оператор не использовать.

For19. Дано целое число $$N$$ ($$> 0$$). Найти произведение $$N! = 1*2*…*N$$ ($$N$$-факториал). Чтобы избежать целочисленного переполнения, вычислять это произведение с помощью вещественной переменной и вывести его как вещественное число.

For20. Дано целое число $$N$$ ($$> 0$$). Используя один цикл, найти сумму $$ 1! + 2! + 3! + … + N! $$ (выражение $$ N! $$ - $$N$$-факториал - обозначает произведение всех целых чисел от $$1$$ до $$N$$: $$ N! = 1*2*…*N $$). Чтобы избежать целочисленного переполнения, проводить вычисления с помощью вещественных переменных и вывести результат как вещественное число.

For21. Дано целое число $$N$$ ($$> 0$$). Используя один цикл, найти сумму $$1 + 1/(1!) + 1/(2!) + 1/(3!) +…+ 1/(N!)$$ (выражение $$N!$$ - $$N$$-факториал - обозначает произведение всех целых чисел от 1 до N: $$N! = 1*2*…*N$$). Полученное число является приближенным значением константы $$e = exp(1)$$.

For22. Дано вещественное число $$X$$ и целое число $$N$$ ($$> 0$$). Найти значение выражения $$1 + X + X^2/(2!) +…+ X^N/(N!) (N! = 1*2*…*N)$$. Полученное число является приближенным значением функции exp в точке $$X$$.

For23. Дано вещественное число $$X$$ и целое число $$N$$ ($$> 0$$). Найти значение выражения $$X — X^3/(3!) + X^5/(5!) -…+ (-1)^N*X^{2*N+1}/((2*N+1)!) (N! = 1*2*…*N)$$. Полученное число является приближенным значением функции sin в точке $$X$$.

For24. Дано вещественное число $$X$$ и целое число $$N$$ ($$> 0$$). Найти значение выражения $$1 — X^2/(2!) + X^4/(4!) -…+ (-1)^N*X^{2*N}/((2*N)!) $$ $$(N! = 1*2*…*N)$$. Полученное число является приближенным значением функции cos в точке $$X$$.

For25. < 1$$) и целое число $$N$$ ($$> 0$$). Найти значение выражения $$X — X^2/2 + X^3/3 -…+ (-1)^{N-1}*X^N/N$$. Полученное число является приближенным значением функции ln в точке $$1 + X$$.

For26. Дано вещественное число $$X$$ ($$|X| < 1$$) и целое число $$N$$ ($$> 0$$). Найти значение выражения $$X — X^3/3 + X^5/5 -…+ (-1)^N*X^{2*N+1}/(2*N+1)$$. Полученное число является приближенным значением функции arctg в точке $$X$$.

For27. Дано вещественное число $$X$$ ($$|X| < 1$$) и целое число $$N$$ ($$> 0$$). Найти значение выражения $$X + 1*X^3/(2*3) + 1*3*X^5/(2*4*5) + … + 1*3*…*(2*N-1)*X^{2*N+1}/(2*4*…*(2*N)*(2*N+1))$$.

Полученное число является приближенным значением функции arcsin в точке $$X$$.

For28. Дано вещественное число $$X$$ ($$|X| < 1$$) и целое число $$N$$ ($$> 0$$). Найти значение выражения $$1 + X/2 — 1*X^2/(2*4) + 1*3*X^3/(2*4*6) -… + (-1)^N-1*1*3*…*(2*N-3)*X^N/(2*4*…*(2*N))$$. Полученное число является приближенным значением функции $$1 + X$$ .

For29. Дано целое число $$N$$ ($$> 1$$) и две вещественные точки на числовой оси: $$A$$, $$B$$ ($$A < B$$). Отрезок [$$A$$, $$B$$] разбит на $$N$$ равных отрезков. Вывести $$H$$ - длину каждого отрезка, а также набор точек $$A$$, $$A + H$$, $$A + 2*H$$, $$A + 3*H$$,…, $$B$$, образующий разбиение отрезка [$$A$$, $$B$$].

For30. Дано целое число $$N$$ ($$> 14$$) и две вещественные точки на числовой оси: $$A$$, $$B$$ ($$A < B$$). Отрезок [$$A$$, $$B$$] разбит на $$N$$ равных отрезков. Вывести $$H$$ - длину каждого отрезка, а также значения функции $$F(X) = 1 — sin(X)$$ в точках, разбивающих отрезок [$$A$$, $$B$$]: $$F(A)$$, $$F(A + H)$$, $$F(A + 2*H)$$,…,$$ F(B)$$.

For31. Дано целое число $$N$$ ($$> 0$$). Последовательность вещественных чисел $$A_K$$ определяется следующим образом: $$A_0 = 2, A_K = 2 + 1/A_{K-1}, K = 1, 2, …$$ . Вывести элементы $$A_1, A_2, …, A_N$$.

For32. Дано целое число $$N$$ ($$> 0$$). Последовательность вещественных чисел $$A_K$$ определяется следующим образом: $$A_0 = 1, A_K = (A_{K-1} + 1)/K, K = 1, 2, …$$ . Вывести элементы $$A_1, A_2, …, A_N$$.

For33. Дано целое число $$N$$ ($$> 1$$). Последовательность чисел Фибоначчи $$F_K$$ (целого типа) определяется следующим образом: $$F_1 = 1, F_2 = 1, F_K = F_{K-2} + F_{K-1}, K = 3, 4, …$$ . Вывести элементы $$F_1, F_2, …, F_N$$.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама