THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В уроке 22 «Химические свойства водорода » из курса «Химия для чайников » узнаем с какими веществами реагирует водород; выясним, какими химическими свойствами обладает водород.

Водород вступает в химические реакции с простыми и сложными веществами. Однако при обычных условиях водород малоактивен. Для его взаимодействия с другими веществами необходимо создать условия: повысить температуру, применить катализатор и др.

Реакции водорода с простыми веществами

При нагревании водород вступает в реакции соединения с простыми веществами - кислородом, хлором, азотом, серой.

Если поджечь на воздухе чистый водород, выходящий из газоотводной трубки, он горит ровным, еле заметным пламенем. Теперь поместим трубку с горящим водородом в банку с кислородом (рис. 95).

Горение водорода продолжается, при этом на стенках банки видны капли воды, образующейся в результате реакции:

При горении водорода выделяется много теплоты. Температура кислородно-водородного пламени достигает больше 2000 °С.

Химическая реакция водорода с кислородом относится к реакциям соединения. В результате реакции образуется оксид водорода (вода). Это значит, что произошло окисление водорода кислородом, т. е. эту реакцию мы можем назвать и реакцией окисления.

Если же в пробирку, опрокинутую вверх дном, собрать немного водорода методом вытеснения воздуха, а затем поднести к ее отверстию горящую спичку, то раздастся громкий «лающий» звук небольшого взрыва смеси водорода с воздухом. Такую смесь называют «гремучей».

На заметку: Способность водорода в смеси с воздухом образовывать «гремучий газ» часто являлась причиной катастроф на воздушных шарах, заполненных водородом. Нарушение герметичности оболочки шара приводило к пожару и даже взрыву. В наше время воздушные шары заполняют гелием или постоянно нагнетаемым горячим воздухом.

В атмосфере хлора водород сгорает с образованием сложного вещества - хлороводорода . При этом протекает реакция:

Реакция водорода с азотом происходит при повышенной температуре и давлении в присутствии катализатора. В результате реакции образуется аммиак NH 3:

Если струю водорода направить на расплавленную в пробирке серу, то у ее отверстия ощутится запах тухлых яиц. Так пахнет газ сероводород H 2 S - продукт реакции водорода с серой:

На заметку: Водород способен не только растворяться в некоторых металлах, но и реа гировать с ними. При этом образуются химические соединения, называемые гидридами (NaH - гидрид натрия). Гидриды некоторых металлов используют как горючее в ракетных двигателях на твердом топливе, а также при получении термоядерной энергии.

Реакции водорода со сложными веществами

Водород реагирует при повышенной температуре не только с простыми, но и со сложными веществами. Рассмотрим в качестве примера его реакцию с оксидом меди(II) CuO (рис. 96).

Пропустим водород над нагретым порошком оксида меди(II) CuO. По мере протекания реакции цвет порошка изменяется с черного на коричнево красный. Это цвет простого вещества меди Cu. В ходе реакции на холодных частях пробирки появляются капельки жидкости. Это еще один продукт реакции - вода H 2 O. Отметим, что в отличие от простого вещества меди вода - сложное вещество.

Уравнение реакции оксида меди(II) с водородом:

Водород в реакции с оксидом меди(II) проявляет способность отнимать у оксида металла кислород, тем самым восстанавливать металл из этого оксида. В результате происходит восстановление меди из сложного вещества CuO до металлической меди (Cu).

Реакции восстановления - это реакции, в ходе которых сложные вещества отдают атомы кислорода другим веществам.

Вещество, отнимающее атомы кислорода, называют восстановителем. В реакции с оксидом меди(II) восстановитель - водород. Так же реагирует водород и с оксидами некоторых других металлов, например PbO, HgO, MoO 3 , WO 3 и др. Окисление и восстановление всегда взаимосвязаны между собой. Если одно вещество (Н 2) окисляется, то другое (CuO) - восстанавливается, и наоборот.

Краткие выводы урока:

  1. При нагревании водород реагирует с кислородом, хлором, азотом, серой.
  2. Восстановление - это отдача атомов кислорода сложными веществами другим веществам.
  3. Процессы окисления и восстановления взаимосвязаны между собой.

Надеюсь урок 22 «Химические свойства водорода » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Водород был открыт во второй половине 18 столетия английским ученым в области физики и химии Г. Кавендишем. Он сумел выделить вещество в чистом состоянии, занялся его изучением и описал свойства.

Такова история открытия водорода. В ходе экспериментов исследователь определил, что это горючий газ, сгорание которого в воздухе дает воду. Это привело к определению качественного состава воды.

Что такое водород

О водороде, как о простом веществе, впервые заявил французский химик А. Лавуазье в 1784 году, поскольку определил, что в состав его молекулы входят атомы одного вида.

Название химического элемента по-латыни звучит как hydrogenium (читается «гидрогениум»), что означает «воду рождающий». Название отсылает к реакции горения, в результате которой образуется вода.

Характеристика водорода

Обозначение водорода Н. Менделеев присвоил этому химическому элементу первый порядковый номер, разместив его в главной подгруппе первой группы и первом периоде и условно в главной подгруппе седьмой группы.

Атомарный вес (атомная масса) водорода составляет 1,00797. Молекулярная масса H 2 равна 2 а. е. Молярная масса численно равна ей.

Представлен тремя изотопами, имеющими специальное название: самый распространенный протий (H), тяжелый дейтерий (D), радиоактивный тритий (Т).

Это первый элемент, который может быть полностью разделен на изотопы простым способом. Основывается он на высокой разнице масс изотопов. Впервые процесс был осуществлен в 1933 году. Объясняется это тем, что лишь в 1932 году был выявлен изотоп с массой 2.

Физические свойства

В нормальных условиях простое вещество водород в виде двухатомных молекул является газом, без цвета, у которого отсутствует вкус и запах. Мало растворим в воде и других растворителях.

Температура кристаллизации — 259,2 о C, температура кипения — 252,8 о C. Диаметр молекул водорода настолько мал, что они обладают способностью к медленной диффузии через ряд материалов (резина, стекло, металлы). Это свойство находит применение, когда требуется очистить водород от газообразных примесей. При н. у. водород имеет плотность, равную 0,09 кг/м3.

Возможно ли превращение водорода в металл по аналогии с элементами, расположенными в первой группе? Учеными установлено, что водород в условиях, когда давление приближается к 2 млн. атмосфер, начинает поглощать инфракрасные лучи, что свидетельствует о поляризации молекул вещества. Возможно, при еще более высоких давлениях, водород станет металлом.

Это интересно: есть предположение, что на планетах-гигантах, Юпитере и Сатурне, водород находится в виде металла. Предполагается, что в составе земного ядра тоже присутствует металлический твердый водород, благодаря сверхвысокому давлению, создаваемому земной мантией.

Химические свойства

В химическое взаимодействие с водородом вступают как простые, так и сложные вещества. Но малую активность водорода требуется увеличить созданием соответствующих условий – повышением температуры, применением катализаторов и др.

При нагревании в реакцию с водородом вступают такие простые вещества, как кислород (O 2), хлор(Cl 2), азот (N 2), сера(S).

Если поджечь чистый водород на конце газоотводной трубки в воздухе, он будет гореть ровно, но еле заметно. Если же поместить газоотводную трубку в атмосферу чистого кислорода, то горение продолжится с образованием на стенках сосуда капель воды, как результат реакции:

Горение воды сопровождается выделением большого количества теплоты. Это экзотермическая реакция соединения, в процессе которой водород окисляется кислородом с образованием оксида H 2 O. Это также и окислительно-восстановительная реакция, в которой водород окисляется, а кислород восстанавливается.

Аналогично происходит реакция с Cl 2 с образованием хлороводорода.

Для осуществления взаимодействия азота с водородом требуется высокая температура и повышенное давление, а также присутствие катализатора. Результатом является аммиак.

В результате реакции с серой образуется сероводород, распознавание которого облегчает характерный запах тухлых яиц.

Степень окисления водорода в этих реакциях +1, а в гидридах, описываемых ниже, – 1.

При реакции с некоторыми металлами образуются гидриды, например, гидрид натрия – NaH. Некоторые из этих сложных соединений используются в качестве горючего для ракет, а также в термоядерной энергетике.

Водород реагирует и с веществами из категории сложных. Например, с оксидом меди (II), формула CuO. Для осуществления реакции, водород меди пропускается над нагретым порошкообразным оксидом меди (II). В ходе взаимодействия реагент меняет свой цвет и становится красно-коричневым, а на холодных стенках пробирки оседают капельки воды.

Водород в ходе реакции окисляется, образуя воду, а медь восстанавливается из оксида до простого вещества (Cu).

Области применения

Водород имеет большое значение для человека и находит применение в самых разных сферах:

  1. В химическом производстве – это сырье, в других отраслях – топливо. Не обходятся без водорода и предприятия нефтехимии и нефтепереработки.
  2. В электроэнергетике это простое вещество выполняет функцию охлаждающего агента.
  3. В черной и цветной металлургии водороду отводится роль восстановителя.
  4. Сего помощью создают инертную среду при упаковке продуктов.
  5. Фармацевтическая промышленность — пользуется водородом как реагентом в производстве перекиси водорода.
  6. Этим легким газом наполняют метеорологические зонды.
  7. Известен этот элемент и в качестве восстановителя топлива для ракетных двигателей.

Ученые единодушно пророчат водородному топливу пальму первенства в энергетике.

Получение в промышленности

В промышленности водород получают методом электролиза, которому подвергают хлориды либо гидроксиды щелочных металлов, растворенные в воде. Также можно получать водород этим способом непосредственно из воды.

Используется в этих целях конверсия кокса или метана с водяным паром. Разложение метана при повышенной температуре также дает водород. Сжижение коксового газа фракционным методом тоже применяется для промышленного получения водорода.

Получение в лаборатории

В лаборатории для получения водорода используют аппарат Киппа.

В качестве реагентов выступают соляная или серная кислота и цинк. В результате реакции образуется водород.

Нахождение водорода в природе

Водород чаще других элементов встречается во Вселенной. Основную массу звезд, в том числе Солнца, и иных космических тел составляет водород.

В земной коре его всего 0,15%. Он присутствует во многих минералах, во всех органических веществах, а также в воде, покрывающей на 3/4 поверхность нашей планеты.

В верхних слоях атмосферы можно обнаружить следы водорода в чистом виде. Находят его и в ряде горючих природных газов.

Газообразный водород является самым неплотным, а жидкий – самым плотным веществом на нашей планете. С помощью водорода можно изменить тембр голоса, если вдохнуть его, а на выдохе заговорить.

В основе действия самой мощной водородной бомбы лежит расщепление самого легкого атома.

Водород занимает особое положение в Периодической системе химических элементов Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H + он сходен со щелочными металлами, и его следует поместить в I группу. По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.

Электронная формула водорода 1s 1 . Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления +1 и –1.

Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:

Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.

В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.

Простое вещество водород (H 2) представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раз легче воздуха, мало растворим в воде.

Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации (435 кДж/моль) распад молекул H 2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.

Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведет себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):

По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щелочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.

В большинстве реакций водород ведет себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:

Смесь двух объемов водорода с одним объемом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °C.

Реакция с галогенами протекает, в зависимости от природы галогена, по-разному:

С фтором такая реакция идет со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идет значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.

При повышенной температуре водород взаимодействует с элементами VI группы - серой, селеном, теллуром, например:

Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450–500 °C в присутствии различных катализаторов:

Водород восстанавливает многие металлы из оксидов, например:

Данную реакцию используют для получения некоторых чистых металлов.

Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.

Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.

В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твердого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.

Вода H 2 O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода - бесцветная жидкость, без запаха и вкуса. Вода - самое распространенное вещество на поверхности Земли. В человеческом организме содержится 63–68% воды.

Физические свойства воды во многом являются аномальными. При нормальном атмосферном давлении вода кипит при 100 °C. Температура замерзания чистой воды 0 °C. B отличие от других жидкостей плотность воды при охлаждении возрастает не монотонно, а имеет максимум при +4 °C. Теплоемкость воды очень высока и составляет 418 кДж/моль·K. Теплоемкость льда при 0 °C составляет 2,038 кДж/моль·K. Аномально высокой является теплота плавления льда. Электропроводность воды очень мала. Аномальные физические свойства воды объясняют ее строение. Валентный угол H–O–H равен 104,5°. Молекула воды представляет собой искаженный тетраэдр, в двух вершинах которого располагаются атомы водорода, а две другие заняты орбиталями неподеленных пар электронов атома кислорода, не участвующих в образовании химических связей.

Вода является стабильным соединением, ее разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:

Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах. Так, натрий вступает в реакцию водой уже при комнатной температуре, реакция сопровождается выделением большого количества тепла; железо реагирует с водой при температуре 800 °С:

Вода может вступать в реакцию со многими неметаллами. Так, при обычных условиях вода обратимо взаимодействует с хлором:

При повышенной температуре вода взаимодействует с углем с образованием так называемого синтез-газа - смеси оксида углерода (II) и водорода:

При обычных условиях вода реагирует со многими основными и кислотными оксидами с образованием оснований и кислот соответственно:

Реакция идет до конца, если соответствующее основание или кислота растворимы в воде.

Пероксид водорода (H 2 O 2) представляет собой бесцветную жидкость, очень неустойчивую при комнатной температуре. Концентрированные растворы пероксида водорода взрывоопасны. В лаборатории H 2 O 2 получают с помощью обменной реакции между пероксидом бария и концентрированной серной кислотой:

В химических реакциях H 2 O 2 может проявлять свойства как окислителя, так и восстановителя, например.

ВОДОРОД, Н (лат. hydrogenium; а. hydrogen; н. Wasserstoff; ф. hydrogene; и. hidrogeno), — химический элемент периодической системы элементов Менделеева, который относят одновременно к I и VII группам, атомный номер 1, атомная масса 1,0079. Природный водород имеет стабильные изотопы — протий (1 Н), дейтерий (2 Н, или D) и радиоактивный — тритий (3 Н, или Т). Для природных соединений среднее отношение D/Н = (158±2).10 -6 Равновесное содержание 3 Н на Земле ~5.10 27 атомов.

Физические свойства водорода

Водород впервые описал в 1766 английский учёный Г. Кавендиш. При обычных условиях водород — газ без цвета, запаха и вкуса. В природе в свободном состоянии находится в форме молекул Н 2 . Энергия диссоциации молекулы Н 2 — 4,776 эВ; потенциал ионизации атома водорода 13,595 эВ. Водород — самое лёгкое вещество из всех известных, при 0°С и 0,1 МПа 0,0899 кг/м 3 ; t кипения- 252,6°С, t плавления — 259,1°С; критические параметры: t — 240°С, давление 1,28 МПа, плотность 31,2 кг/ м 3 . Наиболее теплопроводный из всех газов — 0,174 Вт/(м.К) при 0°С и 1 МПа, удельная теплоёмкость 14,208.10 3 Дж(кг.К).

Химические свойства водорода

Жидкий водород очень лёгок (плотность при -253°С 70,8 кг/м 3) и текуч ( при -253°С равна 13,8 сП). В большинстве соединений водород проявляет степень окисления +1 (подобен щелочным металлам), реже -1 (подобен гидридам металлов). В обычных условиях молекулярный водород малоактивен; растворимость в воде при 20°С и 1 МПа 0,0182 мл/г; хорошо растворим в металлах — Ni, Pt, Pd и др. С кислородом образует воду с выделением тепла 143,3 МДж/кг (при 25°С и 0,1 МПа); при 550°С и выше реакция сопровождается взрывом. При взаимодействии с фтором и хлором реакции идут также со взрывом. Основные соединения водорода: Н 2 О, аммиак NH 3 , сероводород Н 2 S, CH 4 , гидриды металлов и галогенов CaH 2 , HBr, Hl, а также органические соединения С 2 Н 4 , HCHO, CH 3 OH и др.

Водород в природе

Водород — широко распространённый в природе элемент, содержание его в 1 % (по массе). Главный резервуар водорода на Земле — вода (11,19%, по массе). Водород — один из основных компонентов всех природных органических соединений. В свободном состоянии присутствует в вулканических и других природных газах, в (0,0001%, по числу атомов). Составляет основную часть массы Солнца, звёзд, межзвёздного газа, газовых туманностей. В атмосферах планет присутствует в форме Н 2 , CH 4 , NH 3 , Н 2 О, CH, NHOH и др. Входит в состав корпускулярного излучения Солнца (потоки протонов) и космических лучей (потоки электронов).

Получение и применение водорода

Сырьё для промышленного получения водорода — газы нефтепереработки, продукты газификации и др. Основные способы получения водорода: реакция углеводородов с водяным паром, неполное окисление углеводородов , конверсия окиси , электролиз воды. Водород применяют для производства аммиака, спиртов, синтетического бензина, соляной кислоты, гидроочистки нефтепродуктов, резки металлов водородно-кислородным пламенем.

Водород — перспективное газообразное горючее. Дейтерий и тритий нашли применение в атомной энергетике.

Водород (лат. Hydrogenium), H, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,0079. При обычных условиях Водород - газ; не имеет цвета, запаха и вкуса.

Распространение Водорода в природе. Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов типа CH, NH, OH, SiH, PH и т. д. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула Водорода. Обыкновенный Водород состоит из смеси 2 устойчивых изотопов: легкого Водорода, или протия (1 H), и тяжелого Водорода, или дейтерия (2 Н, или D). В природных соединениях Водорода на 1 атом 2 Н приходится в среднем 6800 атомов 1 Н. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым Водородом, или тритием (3 Н, или Т), с мягким β-излучением и периодом полураспада T ½ = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4·10 -15 % от общего числа атомов Водорода). Получен крайне неустойчивый изотоп 4 Н. Массовые числа изотопов 1 Н, 2 Н, 3 Н и 4 Н, соответственно 1, 2, 3 и 4, указывают на то, что ядро атома протия содержит только один протон, дейтерия - один протон и один нейтрон, трития - один протон и 2 нейтрона, 4 Н - один протон и 3 нейтрона. Большое различие масс изотопов Водорода обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом Водорода имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв. Нейтральный атом Водород может присоединять и второй электрон, образуя отрицательный ион Н - при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв. Квантовая механика позволяет рассчитать все возможные энергетические уровни атома Водород, а следовательно, дать полную интерпретацию его атомного спектра. Атом Водорода используется как модельный в квантовомеханических расчетах энергетических уровней других, более сложных атомов.


Молекула Водород Н 2 состоит из двух атомов, соединенных ковалентной химической связью. Энергия диссоциации (то есть распада на атомы) составляет 4,776 эв. Межатомное расстояние при равновесном положении ядер равно 0,7414Å. При высоких температурах молекулярный Водород диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный Водород образуется также в различных химических реакциях (например, действием Zn на соляную кислоту). Однако существование Водорода в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы Н 2 .

Физические свойства Водорода. Водород - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм. Водород кипит (сжижается) и плавится (затвердевает) соответственно при -252,8°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура Водорода очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм), критическая плотность 0,0312 г/см 3 . Из всех газов Водород обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/(м·К), то есть 4,16·10 -4 кал/(с·см·°С). Удельная теплоемкость Водорода при 0°С и 1 атм С p 14,208 кДж/(кг·К), то есть 3,394 кал/(г·°С). Водород мало растворим в воде (0,0182 мл/г при 20°С и 1 атм), но хорошо - во многих металлах (Ni, Pt, Pa и других), особенно в палладии (850 объемов на 1 объем Pd). С растворимостью Водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия Водорода с углеродом (так называемая декарбонизация). Жидкий Водород очень легок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при -253°С 13,8 спуаз).

Химические свойства Водорода. В большинстве соединений Водород проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий I группу системы Менделеева. Однако в гидридах металлов ион Водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H - построен подобно хлориду Na + Cl - . Этот и некоторые других факты (близость физических свойств Водорода и галогенов, способность галогенов замещать Водород в органических соединениях) дают основание относить Водород также и к VII группе периодической системы. При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный Водород обладает повышенной химические активностью по сравнению с молекулярным. С кислородом Водород образует воду:

Н 2 + 1 / 2 О 2 = Н 2 О

с выделением 285,937 кДж/моль, то есть 68,3174 ккал/моль тепла (при 25°С и 1 атм). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объему) от 4 до 94% Н 2 , а водородо-воздушной смеси - от 4 до 74% Н 2 (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом). Водород используется для восстановления многих металлов, так как отнимает кислород у их оксидов:

CuO + H 2 = Cu + H 2 O,

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl.

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях. При нагревании Водород энергично реагирует с серой:

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром. С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан).

Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя гидриды:

Н 2 + 2Li = 2LiH.

Важное практическое значение имеют реакции Водорода с оксидом углерода (II), при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например НСНО, СН 3 ОН и другие. Ненасыщенные углеводороды реагируют с Водородом, переходя в насыщенные, например:

С n Н 2n + Н 2 = С n Н 2n+2 .

Роль Водород и его соединений в химии исключительно велика. Водород обусловливает кислотные свойства так называемых протонных кислот. Водород склонен образовывать с некоторыми элементами так называемую водородную связь, оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение Водорода. Основные виды сырья для промышленного получения Водорода - газы природные горючие, коксовый газ и газы нефтепереработки. Водород получают также из воды электролизом (в местах с дешевой электроэнергией). Важнейшими способами производства Водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия):

СН 4 + H 2 О = СО + ЗН 2 ,

и неполное окисление углеводородов кислородом:

СН 4 + 1 / 2 О 2 = СО + 2Н 2

Образующийся оксид углерода (II) также подвергается конверсии:

СО + Н 2 О = СО 2 + Н 2 .

Водород, добываемый из природного газа, самый дешевый.

Из коксового газа и газов нефтепереработки Водород выделяют путем удаления остальных компонентов газовой смеси, сжижаемых более легко, чем Водород, при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор КОН или NaOH (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях Водород получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской Водород в баллонах.

Применение Водорода. В промышленном масштабе Водород стали получать в конце 18 века для наполнения воздушных шаров. В настоящее время Водород широко применяют в химической промышленности, главным образом для производства аммиака. Крупным потребителем Водорода является также производство метилового и других спиртов, синтетического бензина и других продуктов, получаемых синтезом из Водорода и оксида углерода (II). Водород применяют для гидрогенизации твердого и тяжелого жидкого топлив, жиров и других, для синтеза HCl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы Водорода - дейтерий и тритий.

Фенолы

Строение
Гидроксильная группа в молекулах органических соединений может быть связана с ароматическим ядром непосредственно, а может быть отделена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства веществ будут существенно отличаться друг от друга из-за взаимного влияния групп атомов (вспомните одно из положений теорииБутлерова). И действительно, органические соединения, содержащие ароматический радикал фенил С 6 Н 5 -, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называют фенолами.

Фенолы - органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксигруппами.
Так же как и спирты, фенолы классифицируют по атомности, т. е. по количеству гидроксильных групп.Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Существуют и другие многоатомные фенолы , содержащие три и более гидроксиль-ные группы в бензольном кольце.
Познакомимся подробнее со строением и свойствами простейшего представителя этого класса - фенолом С6Н50Н. Название этого вещества и легло в основу названия всего класса - фенолы.

Физические свойства
Твердое бесцветное кристаллическое вещество, tºпл = 43 °С, tº кип = °С, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно.
Строение молекулы фенола
В молекуле фенола гидроксил непосредственно связан с атомом углерода бензольного ароматического ядра.
Вспомним строение групп атомов, образующих молекулу фенола.
Ароматическое кольцо состоит из шести атомов углерода, образующих правильный шестиугольник, вследствие,sр 2 -гибридизации электронных орбиталей шести атомов углерода. Эти атомы связаны Þ-связями. Не участвующие в образовании ст-связей р-электроны каждого атома углерода, перекрывающиеся по разные стороны плоскости Þ-связей, образуют две части единого шестиэлектронного п -облака, охватывающего все бензольное кольцо (ароматическое ядро). В молекуле бензола С6Н6 ароматическое ядро абсолютно симметрично, единое электронное п -облако равномерно охватывает кольцо атомов углерода под и над плоскостью молекулы (рис. 24). Ковалентная связь между атомами кислорода и водорода гидроксиль-ного радикала сильно полярна, общее электронное облако связи О-Н смещено в сторону атома кислорода, на котором возникает частичный отрицательный заряд, а на атоме водорода - частичный положительный заряд. Кроме того, атом кислорода в гидроксильной группе имеет две неподеленные, принадлежащие только ему электронные пары.

В молекуле фенола гидроксильный радикал взаимодействует с ароматическим ядром, при этом неподеленные электронные пары атома кислорода взаимодействуют с единым тс-облаком бензольного кольца, образуя единую электронную систему. Такое взаимодействие неподеленных электронных пар и облаков тг-связей называют сопряжением. В результате сопряжения неподеленной электронной пары атома кислорода гидроксигруппы с электронной системой бензольного кольца уменьшается электронная плотность на атоме кислорода. Это снижение компенсируется за счет большей поляризации связи О-Н, что, в свою очередь, приводит к увеличению положительного заряда на атоме водорода. Следовательно, водород гидроксильной группы в молекуле фенола имеет «кислотный» характер.
Логично предположить, что сопряжение электронов бензольного кольца и гидроксильной группы сказывается не только на ее свойствах, но и на реакционной способности бензольного кольца.
В самом деле, как вы помните, сопряжение неподеленных пар атома кислорода с л-облаком бензольного кольца приводит к перераспределению электронной плотности в нем. Она понижается у атома углерода, связанного с ОН-группой (сказывается влияние электронных пар атома кислорода) и повышается у соседних с ним атомов углерода (т. е. положения 2 и 6, или орто-положения). Очевидно, что повышение электронной плотности у этих атомов углерода бензольного кольца приводит к локализации (сосредоточению) отрицательного заряда на них. Под влиянием этого заряда происходит дальнейшее перераспределение электронной плотности в ароматическом ядре - смещение ее от 3-го и 5-го атомов (.мета-положение) к 4-му (орто-положение). Эти процессы можно выразить схемой:

Таким образом, наличие гидроксильного радикала в молекуле фенола приводит к изменению л-облака бензольного кольца, увеличению электронной плотности у 2, 4 и 6-го атомов углерода (орто-, дара-положения) и уменьшению электронной плотности у 3-го и 5-го атомов углерода (мета-положения).
Локализация электронной плотности в орто- и пара-положениях делает их наиболее вероятными для атак электрофильных частиц при взаимодействии с другими веществами.
Следовательно, влияние радикалов, составляющих молекулу фенола, взаимно, и оно определяет его характерные свойства.
Химические свойства фенола
Кислотные свойства
Как уже было сказано, атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только с щелочными металлами, но и с щелочами с образованием фенолятов.
Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола.
Качественная реакция на фенол
Фенол реагирует с хлоридом железа(ІІІ) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.
Эта реакция позволяет обнаруживать его даже в очень незначительных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(ІІІ).
Реакции бензольного кольца
Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.
1. Бромирование фенола. В отличие от бензола для бромирования фенола не требуется добавления катализатора (бромида железа(ІІІ)).
Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и пара-положения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола. Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола.
Эта реакция, так же как и реакция с хлоридом железа(ІІІ), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара-изомеров нитрофенола:

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко.
4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом, происходит с образованием продуктов реакции - фенолформальдегидных смол и твердых полимеров.
Взаимодействие фенола с формальдегидом можно описать схемой:

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов.
Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания феноло-формальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе феноло-формальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе феноло-формальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам стало понятно, почему фенол и продукты на его основе находят широкое применение (схема 8).

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама