THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Принадлежащие A, также принадлежит B. Формальное определение:

(A \subset B) \Leftrightarrow \forall x. (x \in A \Rightarrow x \in B).

Множество B называется надмно́жеством множества A, если A - подмножество B.

Существует два символических обозначения для подмножеств:

Обе системы обозначений используют символ \subset в разных смыслах, что может привести к путанице. В данной статье мы будем использовать последнюю систему обозначений.

То, что B называется надмножеством A, часто записывают B \supset A.

Множество всех подмножеств множества A обозначается \mathcal{P}(A) и называется булеаном .

Собственное подмножество

Любое множество B является своим подмножеством. Если мы хотим исключить B из рассмотрения, мы пользуемся понятием со́бственного

Множество A является собственным подмножеством множества B, если A \subset B и A \ne B.

Пустое множество является подмножеством любого множества. Если мы вдобавок хотим исключить из рассмотрения пустое множество, мы пользуемся понятием нетривиа́льного подмножества, которое определяется так:

Множество A является нетривиальным подмножеством множества B, если A является собственным подмножеством B и A \ne \varnothing.

Примеры

  • Множества \varnothing, \{0\}, \{1,3,4\}. \{ 0,1,2,3,4,5\}
  • Множества \{ \varnothing, \uparrow, moose \}, \{ $,%,*,\uparrow \}, \{\varnothing\}, \varnothing являются подмножествами множества \{ $, %, \varnothing, \uparrow, *, moose \}
  • Пусть A = \{a,b\}, тогда \mathcal{P}(A) = \{\varnothing, \{a\}, \{b\}, \{a,b\} \}.
  • Пусть A = \{1,2,3,4,5\},\; B = \{1,2,3\},\; C = \{4,5,6,7\}. Тогда B \subset A,\; C \not\subset A.

Свойства

Отношение подмножества обладает целым рядом свойств .

  • Отношение подмножества является отношением частичного порядка :
    • Отношение подмножества рефлексивно : B \subset B
    • Отношение подмножества антисимметрично : (A \subset B \; \and \; B \subset A) \Leftrightarrow (A = B)
    • Отношение подмножества транзитивно : (A \subset B \;\and \; B \subset C) \Rightarrow (A \subset C)
  • Пустое множество является подмножеством любого другого, поэтому оно является наименьшим множеством относительно отношения подмножества: \varnothing \subset B
  • Для любых двух множеств A и B следующие утверждения эквивалентны:
    • A \subset B.
    • A \cap B = A.
    • A \cup B = B.
    • B^{\complement} \subset A^{\complement}.

Подмножества конечных множеств

Если исходное множество конечно, то у него существует конечное количество подмножеств. А именно, у n-элементного множества существует 2^n подмножеств (включая пустое). Чтобы убедиться в этом, достаточно заметить, что каждый элемент может либо входить, либо не входить в подмножество, а значит, общее количество подмножеств будет n-кратным произведением двоек. Если же рассматривать только подмножества n-элементного множества из k\le n элементов, то их количество выражается биномиальным коэффициентом \textstyle\binom{n}{k}. Для проверки этого факта можно выбирать элементы подмножества последовательно. Первый элемент можно выбрать n способами, второй n-1 способом, и так далее, и, наконец, k-й элемент можно выбрать n-k+1 способом. Таким образом мы получим последовательность из k элементов, и ровно k! таким последовательностям соответствует одно подмножество. Значит, всего найдется \textstyle\frac{n(n-1)\dots(n-k+1)}{k!}=\binom{n}{k} таких подмножеств.

Напишите отзыв о статье "Подмножество"

Примечания

Литература

  • Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.. - 3-е изд., стереотип. - М .: МЦНМО, 2008. - 128 с. - ISBN 978-5-94057-321-0 .

Отрывок, характеризующий Подмножество

– Я не виноват, что разговор зашел при других офицерах. Может быть, не надо было говорить при них, да я не дипломат. Я затем в гусары и пошел, думал, что здесь не нужно тонкостей, а он мне говорит, что я лгу… так пусть даст мне удовлетворение…
– Это всё хорошо, никто не думает, что вы трус, да не в том дело. Спросите у Денисова, похоже это на что нибудь, чтобы юнкер требовал удовлетворения у полкового командира?
Денисов, закусив ус, с мрачным видом слушал разговор, видимо не желая вступаться в него. На вопрос штаб ротмистра он отрицательно покачал головой.
– Вы при офицерах говорите полковому командиру про эту пакость, – продолжал штаб ротмистр. – Богданыч (Богданычем называли полкового командира) вас осадил.
– Не осадил, а сказал, что я неправду говорю.
– Ну да, и вы наговорили ему глупостей, и надо извиниться.
– Ни за что! – крикнул Ростов.
– Не думал я этого от вас, – серьезно и строго сказал штаб ротмистр. – Вы не хотите извиниться, а вы, батюшка, не только перед ним, а перед всем полком, перед всеми нами, вы кругом виноваты. А вот как: кабы вы подумали да посоветовались, как обойтись с этим делом, а то вы прямо, да при офицерах, и бухнули. Что теперь делать полковому командиру? Надо отдать под суд офицера и замарать весь полк? Из за одного негодяя весь полк осрамить? Так, что ли, по вашему? А по нашему, не так. И Богданыч молодец, он вам сказал, что вы неправду говорите. Неприятно, да что делать, батюшка, сами наскочили. А теперь, как дело хотят замять, так вы из за фанаберии какой то не хотите извиниться, а хотите всё рассказать. Вам обидно, что вы подежурите, да что вам извиниться перед старым и честным офицером! Какой бы там ни был Богданыч, а всё честный и храбрый, старый полковник, так вам обидно; а замарать полк вам ничего? – Голос штаб ротмистра начинал дрожать. – Вы, батюшка, в полку без году неделя; нынче здесь, завтра перешли куда в адъютантики; вам наплевать, что говорить будут: «между павлоградскими офицерами воры!» А нам не всё равно. Так, что ли, Денисов? Не всё равно?
Денисов всё молчал и не шевелился, изредка взглядывая своими блестящими, черными глазами на Ростова.
– Вам своя фанаберия дорога, извиниться не хочется, – продолжал штаб ротмистр, – а нам, старикам, как мы выросли, да и умереть, Бог даст, приведется в полку, так нам честь полка дорога, и Богданыч это знает. Ох, как дорога, батюшка! А это нехорошо, нехорошо! Там обижайтесь или нет, а я всегда правду матку скажу. Нехорошо!
И штаб ротмистр встал и отвернулся от Ростова.
– Пг"авда, чог"т возьми! – закричал, вскакивая, Денисов. – Ну, Г"остов! Ну!
Ростов, краснея и бледнея, смотрел то на одного, то на другого офицера.
– Нет, господа, нет… вы не думайте… я очень понимаю, вы напрасно обо мне думаете так… я… для меня… я за честь полка.да что? это на деле я покажу, и для меня честь знамени…ну, всё равно, правда, я виноват!.. – Слезы стояли у него в глазах. – Я виноват, кругом виноват!… Ну, что вам еще?…
– Вот это так, граф, – поворачиваясь, крикнул штаб ротмистр, ударяя его большою рукою по плечу.
– Я тебе говог"ю, – закричал Денисов, – он малый славный.
– Так то лучше, граф, – повторил штаб ротмистр, как будто за его признание начиная величать его титулом. – Подите и извинитесь, ваше сиятельство, да с.
– Господа, всё сделаю, никто от меня слова не услышит, – умоляющим голосом проговорил Ростов, – но извиняться не могу, ей Богу, не могу, как хотите! Как я буду извиняться, точно маленький, прощенья просить?
Денисов засмеялся.
– Вам же хуже. Богданыч злопамятен, поплатитесь за упрямство, – сказал Кирстен.
– Ей Богу, не упрямство! Я не могу вам описать, какое чувство, не могу…
– Ну, ваша воля, – сказал штаб ротмистр. – Что ж, мерзавец то этот куда делся? – спросил он у Денисова.
– Сказался больным, завтг"а велено пг"иказом исключить, – проговорил Денисов.
– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.

Два множества A и B равны, если они состоят из одних и тех же элементов.

Из этого принципа следует, что для любых двух различных множеств всегда найдется некоторый объект, являющийся элементом одного из них и не являющийся элементом другого. Так как пустые совокупности не содержат элементов, то они не различимы и поэтому пустое множество – единственно.

Подмножества. Определение равенства множеств можно сформулировать иначе, используя понятие подмножества.

Определение. Множество A называется подмножеством множества B , если каждый элемент A является элементом B.

Следствие 1. Очевидно,
для любого множества A, т.к. каждый элемент из A есть элемент из A.

Следствие 2. Для любого множества A,
, ибо если бы пустое множество не являлось подмножеством A, то в пустом подмножестве существовали бы элементы, не принадлежащие A. Однако пустое множество не содержит вообще ни одного элемента.

Если
, то пишут
, и если
, то A – собственное подмножество B.

Понятие подмножества множеств позволяет легко формализовать понятие равенства двух множеств.

Утверждение. Для любых A и B

Логическую эквивалентность, определяемую выражением (1.1) используют как основной способ доказательства равенства двух множеств.

Замечание . Отношение включения  обладает рядом очевидных свойств:

(рефлексивность);

(транзитивность).

Для любого множества X можно определить специальное множество всех подмножеств множества X, которое называется булеаном
, которое включает в себя само множество X, все его подмножества и пустое множество
.

Пример. Пусть
– это множество, состоящее из трех элементов. Тогда булеан(X) это множество:

Собственными подмножествами (X) являются следующие множества:

{a},{b},{c},{a,b},{b,c},{a,c}.

В общем случае, если множество X содержит n элементов, то множество его подмножеств (X) состоит из элементов.

Операции на множествах.

Пусть U – универсальное множество,
. Тогда для множеств X,Y можно определить операции
.

Определение . Объединением множеств X и Y называется множество
, состоящее из элементов, входящих хотя бы в одно из множеств (X или Y):

Рис. 1.1 – Объединение множеств Рис. 1.2 – Пересечение множеств


Определение . Пересечением множеств X и Y называется множество
, состоящее из элементов, входящих в X и в Y одновременно:

Определение . Разностью множеств X и Y называется множество
, состоящее из элементов, входящих в множество X, но не входящих в Y:

Рис. 1.3 – Разность множеств
Рис. 1.4 – Симметрическая

разность множеств

Определение . Симметрической разностью двух множеств X и Y называется множество
, состоящее из элементов множества X и элементов множества Y, за исключением элементов, являющихся общими для обоих множеств:

Определение . Для любого множества
дополнением множествадо U называется такое множество, что:

Рис. 1.5 – Дополнение множества X до U

На рис. 1.1  1.5 представлены диаграммы Венна, наглядно демонстрирующие результаты операций
.

Дополнение множества иногда обозначается
. Операции
связаны между собой законами де Моргана:

, (1.7)

. (1.8)

В справедливости законов де Моргана легко убедиться самостоятельно.

В таблице 1.1 представлены основные свойства операций над множествами.

Таблица 1.1

Свойства операций

Объединение, пересечение, дополнение

коммутативность

,

ассоциативность

дистрибутивность

идемпотентность

,
,
,
,
,

теоремы де Моргана

,

инволюция

Операции объединения и пересечения можно обобщить. Пусть
– множество индексов,
– семейство подмножеств множества X.

Определение. Семейство подмножеств
множества X, для которых
, называетсяразбиением множества X, если выполняются следующие два условия:

,

Определение. Семейство подмножеств
множества X называетсяпокрытием множества X, если:
.

Определение. Класс K подмножеств из U называется алгеброй, если:

1.
;

2. из того, что
следует, что
;

3. из того, что
следует, что
.

Пример. Пусть
, тогда класс
образует алгебру.

Определение. Класс F подмножеств из U образует -алгебру, если:

1.
;

2. из того, что
следует
;

3. из того, что
,
следует, что
.

Пример. Множество всех подмножеств U образует -алгебру, т.е.(U) – -алгебра.

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Значение слова подмножество

подмножество в словаре кроссвордиста

Энциклопедический словарь, 1998 г.

подмножество

понятие теории множеств. Подмножество множества А - множество В (обозначается В? А), каждый элемент которого принадлежит А. Напр., множество всех четных чисел является подмножеством множества всех целых чисел.

Подмножество

множества А (математическое), любое множество, каждый элемент которого принадлежит А. Например, множество всех чётных чисел является П. множества всех целых чисел. Если к числу множеств причислить «пустое» множество, совсем не содержащее элементов, то, в силу определения, его следует считать П. любого другого множества. Само множество А и пустое множество называются иногда несобственными П., остальные же П. ≈ собственными. См.также Множеств теория.

Википедия

Подмножество

Подмно́жество в теории множеств - это понятие части множества.

Примеры употребления слова подмножество в литературе.

Вы можете также набрать следующую букву, чтобы перейти к подмножеству всех возможных завершений.

Представленный документ МОЖЕТ быть как подмножеством оригинальной версии, так и содержать сведения, которые в ней не были представлены.

Хармсовский ноль как некое множество, включающее в себя бесконечный ряд нулевых подмножеств , -- это мир бесконечности.

Возможность печати подмножества страниц требует наличия фильтра, который может обрабатывать такую ситуацию.

Создание индекса с правилом фрагментации, не совпадающим с правилом фрагментации таблицы, полезно в тех случаях, когда в разных приложениях выборки из таблицы осуществляются на основе разных подмножеств ее атрибутов.

Идет о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек на координатной прямой, о множестве прямых, проходящих через точку.

Предметы или объекты, образующие данное множество, называются его элементами. Например, число $6$ будет являться элементом множества натуральных чисел, а число $0,9$ не будет являться элементом множества натуральных чисел.

Виды множеств

Множества могут быть конечными и бесконечными, пустыми.

Определение 2

Конечным называют множество, состоящее из конечного числа элементов, но при этом конечное множество может иметь любое количество элементов.

Среди конечных множеств выделяют множество, не имеющее ни одного элемента. Такое множество называется пустым множеством.

Определение 3

Множество, не являющееся конечным, называют бесконечным множеством .

Подмножества

Если некоторое множество не является пустым, то из него можно выделить другие множества, которые будут являться его частями.

Например, из множества натуральных чисел можно выделить множество четных.

В математике часть множества называют - подмножество. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества.

Обозначение множеств, подмножеств и их элементов

Чаще всего множества обозначаются латинскими буквами- $A, B, C , D, X, Y, Z, W$ и Т.Д.

Элементы множеств обозначаются строчными буквами $a,b,c,d,x,y,z$ и Т.Д.

Записать принадлежность некоторого элемента к некоторому множеству, например то, что некоторой элемент $a$ будет входить в множество $A$ математически можно так: $a\in A$.Прочитать данную запись можно так: a принадлежит множеству $A$.

Если же некоторый элемент, например, $b$ не принадлежит множеству $B$, то это записывается так: $b\notin B$.Читают эту запись так: $b$ не принадлежит множеству $B$

Например, если обозначить множество целых чисел за $A$, что тогда можно записать: $3\in A$, $7,5\notin B$

Пустое множество в математике обозначают так: $ᴓ$

Для обозначения того, что множество $B$ является подмножеством множества $A$, используют обозначение: Знак $\subset $ обозначает включение одного множества в другое множество.

Пример 1

Определить какие элементы из перечисленных $12,38,54,79,934$ будут входить в множество $A$- чисел кратных $3$.

Решение: По условию множество $A$ содержит в себе элементы, каждый из которых должен быть кратным, т.е. делится без остатка на $3.$ Значит для того чтобы определить будут ли заданные числа являться элементами множества $A$ нам надо проверить какие из них будут делится на $3$ без остатка, какие нет.

Вспомним признак делимости на $3$ : Если сумма цифр, входящих в состав числа делится на $3$, то число делится на $3$ без остатка.

$12$ делится на $3$, т.к. сумма цифр числа $12$ равна $3$

число $38$ на $3$ без остатка делится не будет, т.к. сумма цифр $3+8=11$ не делится на $3$ без остатка

аналогично т.к. суммы цифр числа $54$ равна $9$ доказываем, что на $3$ оно делится, в число $74$ на $3$ делится не будет, т.к. сумма цифр равна $11.$

Найдем сумму цифр числа $934: 9+3+4=16$, число $16$ не кратно $3$ ,значит и число $934$ на $3$ без остатка делится не будет

Теперь сделаем вывод, какие числа будут являться элементами множества $A$:

Способы задания множеств

Существует два глобально различных способа задания множеств.

Первый заключается в том, что множество задается указанием всех его элементов. В таком случае говорят, что множество задано перечислением всех своих элементов или списком своих элементов. Перечислением элементов можно задать только конечные множества и при небольшом количестве элементов, входящих в него

Конечные множества с небольшим количеством элементов обычно записывают в фигурных скобках $\left\{a,b,c\right\}$

При таком способе задания множеств говорят, что множество задано перечислением его элементов.

Второй способ задания множеств применим как для конечных. так и для бесконечных множеств. Он заключается в том, что указывается свойство, которым обладает каждый элемент данного множества - множество задают описанием, т.е. указав его характеристическое свойство, т. е свойство, которым обладают все элементы этого множества и не обладают никакие другие объекты.

Пример 2

Например, с помощью описания можно задать такие множество натуральных чисел от $1$ до $9$ включительно. Характеристическим свойством, т. е. свойством, которым обладают все элементы этого множества для данных элементов будет являться то, что все они являются натуральными числами и каждое из них не меньше $1$ и не больше $9$. Перечислением указанное множество можно задать следующим образом:

$A=\left\{1\ ,2\ ,3,4,5,6,7,8,9\right\}$

Равенство множеств

Множества равны в том случае, если равны их элементы. При этом если множества состоят из одних и тех же элементов, но записанных в разном порядке то эти множества различны, хотя и равны.

Объединение множеств

Из двух множеств $A$ и $B$ можно образовать новое множество, объединяя все элементы множества $A$ и все элементы множества $B$

Математически это можно обозначить так:$\ А\ \cup B$

Объединением множеств $A$ и $B$ называется новое множество$\ А\ \cup B$, состоящее из тех и только из тех элементов, которые входят хотя бы в одно из множеств $A$ или $B$.

Разность множеств

Разностью двух множеств $A$ и $B$ называют такое множество, в которое входят все элементы из множества $A$, не принадлежащие множеству $B$.

Множество А называют подмножеством множества S (или в множестве 5), если каждый элемент множества А является элементом множества S. Обозначение: Ис5.

Выражение AqS также читают: «А включено в 5», «А содержится в 5», «S содержит А», «А часть S». Знак с называют символом включения.

Запишем данное определение символически:

Из определения вытекает: множество А является подмножеством в S тогда и только тогда, когда из предложения (хеА ) следует предложение (xeS).

Построим отрицание к тому, что AczS. По законам логики имеем:

Итак, предложение «Множество А не включено в S » равносильно предложению «Существует элемент множества А , который не лежит в S».

Два множества А и В формально можно соединить знаками включения двумя способами: A(z.B и ВсА. Каждое из этих выражений определяет предложение, которое может быть истинным или ложным. Второе включение В (также пишут А^В) по отношению к первому называют обратным. Не всегда из справедливости одного из включений следует истинность другого включения.

Пример 6.2.1. Имеет место включение {-2;2} с {-2;0; 1 ;2}, так как оба числа (-2) и 2 являются элементами множества {-2;0; 1 ;2}. Однако {-2;0; 1 ;2} не включено в {-2;2}, так как, например, 0г {-2;2}.

Пример 6.2.2. Пусть А - множество всех ромбов, В - множество всех квадратов.

А ? В, так как существует ромб, не являющийся квадратом.

В с: А, так как любой квадрат является ромбом (что вытекает из определений данных фигур).

Друг ими словами, множество всех квадратов является подмножеством множества всех ромбов.

Пример 6.2.3. | *:12}с{* | дг:3}, так как *:12=>*:3 (обоснуйте самостоятельно). Однако обратное включение неверно, гак как х:3фх":2 (приведите контрпример).

Из определения вытекает, что то есть каждое множество является подмножеством самою себя.

Возьмем вместо А пустое множество. Тогда утверждение 0qS равносильно V* (хе0 xeS). Так как посылка импликации всегда ложна, то для любого объекта д; импликация принимает истинное значение. Значит, утверждение 0qS верно. Итак, пустое множество является подмножеством любого множества.

Вывод: у любого непустого множества всегда есть два подмножества - само множество и пустое. Их называют тривиальными подмножествами. Само множество также называют несобственным подмножеством.

Подмножество в S называется собственным, если оно не совпадает с S. Запись AaS означает, что А является собственным подмножеством в S:

Знак символом строгого включении.

Мы имеем два отношения: отношение принадлежности элемента множеству (обозначаемое знаком е) и отношение включения множеств (обозначаемое знаком с). В общем случае это разные знаки. Например, {2}с{2,3}, но {2} *г{2,3}. Однако иногда между множествами можно поставить оба знака.

Пример 6.2.4. Множество А = {2} является элементом множества В = {1,2,{2}}. При этом А есть подмножество множества В , так вес элементы множества А лежат в В А есть только один элемент - число 2, который лежит в В).

Итак, {2}е{1,2,{2» и {2}с{ 1,2,{2}}.

Пример 6.2.5. Рассмотрим плоскость а и прямую /, лежащую на этой плоскости. Если рассматривать прямую как элемент плоскости, то принято писать lea. Если же понимать прямую как множество точек, принадлежащих данной прямой, то это множество будет подмножеством множества всех точек плоскости. Тогда можно записать /са.

Пусть верны прямое и обратное включения AqB и B В этом случае для всех х выполняются импликации хеЛ ->хеВ и xgB->xеЛ, что равносильно тому, что для всех.v хеЛ тогда и только тогда, когда хеВ. Это означает, что множества А и В совпадают:

Эю простое соображение лежит в основе метода доказательства равенства множеств, называемого методом двойного включения : для того чтобы доказать, что множества А и В равны, надо доказать прямое и обратное включения множ еств.

По сути, эта идея была продемонстрирована в примере 6.1.3, так как прямое включение A означает, что из предиката Р{х), задающего множество А , следует предикат Q{x ), задающий множество В , а обратное включение означает, что из Q(x) следует Р(х). Рассмотрим еще один пример.

Пример 6.2.6. Возьмем множества:

А = {2п | neZ) - множество всех четных чисел,

В - {хх=а+Ь, где а и b - нечетные числа} - множество всех чисел, каждое из которых является суммой некоторых нечетных чисел.

Докажем, что А=В.

Покажем справедливость включения А^В. Пусть хеА, тогда имеем х = 2w = (2/f-l)+1, то есть х представим в виде суммы двух нечетных чисел. Значит, хеВ.

Верно также обратное включение ВсА. В самом деле, пусть хеВ. Тогда х = (2/7+1)+(2А+1) = 2(/;+А"+1) = 2т. Значит х - четное число, поэтому хеА.

Оба включения доказаны. Значит, множества А и В равны.

Упражнение. Докажите, что множества {2/7-1 пе Z} и {2/7+1 | не Z} равны, то есть оба определяют множество нечетных чисел.

Пример 6.2.7. Заметим, что множества А= {2я-1 | //eN} и В - {2/7+1 | /7 € N} нс равны, так как IgA, но 1 &В. Поэтому множество всех нечетных положительных чисел задаст только множество Л. При этом включение Л^В верно.

Пусть дано множество S. Семейство всех подмножеств множества S называется булеаном множества S (или степенью множества S) и обозначается В(5) или 2 s .

По определению В(5) = {X | AfcS}.

Ясно, что 0еВ(5) и SeB(S) для любого множества S.

Пример 6.2.8. Пусть S = {1,2,3}. Найдем булсан этого множества.

Заметим, что элементами булеана являются множества.

Термин «степень множества» и соответствующее обозначение мотивируются тем, что если мы имеем конечное //-элементное множество, то число элементов его булеана будет равно степени 2". Рассмотренный выше пример иллюстрирует эту зависимость. Доказательство данного факта будет дано в главе 3. Там же будет рассмотрена формула, позволяющая находить у //-элементного множества число подмножеств, содержащих фиксированное число элементов.

  • В некоторой литературе знаком с обозначают произвольное подмножество.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама