THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

(Конспект лекций)

Строение атома. Введение.

Объектом изучения в химии являются химические элементы и их соединения. Химическим элементом называют совокупность атомов с одинаковым положительным зарядом. Атом – это наименьшая частица химического элемента, сохраняющая его химические свойства . Связываясь, друг с другом, атомы одного или разных элементов образуют более сложные частицы – молекулы . Совокупность атомов или молекул образуют химические вещества. Каждое индивидуальное химическое вещество характеризуется набором индивидуальных физических свойств, такими как температуры кипения и плавления, плотностью, электро- и теплопроводностью и т.п.

1. Строение атома и Периодическая система элементов

Д.И. Менделеева .

Знание и понимание закономерностей порядка заполнения Периодической системы элементов Д.И. Менделеева позволяет понять следующее:

1.физическую суть существования в природе определенных элементов,

2.природу химической валентности элемента,

3.способность и "лёгкость" элемента отдавать или принимать электроны при взаимодействии с другим элементом,

4.природу химических связей, которые может образовать данный элемент при взаимодействии с другими элементами, пространственное строение простых и сложных молекул и пр., пр.

Строение атома.

Атом представляет собой сложную микросистему находящихся в движении и взаимодействующих друг с другом элементарных частиц.

В конце 19 и начале 20 веков было установлено, что атомы состоят из более мелких частиц: нейтронов, протонов и электронов, Последние две частицы являются заряженными частицами, протон несет на себе положительный заряд, электрон - отрицательный. Поскольку атомы элемента в основном состоянии электронейтральны, то это означает, что число протонов в атоме любого элемента равно числу электронов. Масса атомов определяется суммой массы протонов и нейтронов, количество которых равна разности массы атомов и его порядкового номера в периодической системе Д.И. Менделеева.

В 1926 г Шрёдингер предложил описывать движение микрочастиц в атоме элемента при помощи выведенного им волнового уравнения. При решении волнового уравнения Шрёдингера для атома водорода появляются три целочисленных квантовых числа: n , ℓ и m , которые характеризуют состояние электрона в трёхмерном пространстве в центральном поле ядра. Квантовые числа n , ℓ и m принимают целочисленные значения. Волновая функция, определяемая тремя квантовыми числами n , ℓ и m и получаемая в результате решения уравнения Шрёдингера, называется орбиталью. Орбиталь - это область пространства, в котором наиболее вероятно нахождение электрона , принадлежащего атому химического элемента. Таким образом, решение уравнения Шредингера для атома водорода приводит к появлению трёх квантовых чисел, физический смысл которых состоит в том, что они характеризуют три разного вида орбиталей, которые может иметь атом. Рассмотрим более подробно каждое квантовое число.

Главное квантовое число n может принимать любые положительные целочисленные значения: n = 1,2,3,4,5,6,7…Оно характеризует энергию электронного уровня и размер электронного ″облака″. Характерно, что номер главного квантового числа совпадает с номером периода, в котором находится данный элемент.

Азимутальное или орбитальное квантовое число ℓ может принимать целочисленные значения от = 0….до n – 1 и определяет момент движения электронов, т.е. форму орбитали. Для различных численных значений ℓ используют следующие обозначения: = 0, 1, 2, 3, и обозначаются символами s , p , d , f , соответственно для = 0, 1, 2 и 3. В периодической системе элементов нет элементов со спиновым числом = 4.

Магнитное квантовое число m характеризует пространственное расположение электронных орбиталей и, следовательно, электромагнитные свойства электрона. Оно может принимать значения от – до + , включая нуль.

Форма или, точнее, свойства симметрии атомных орбиталей зависят от квантовых чисел и m . "Электронное облако", соответствующее s - орбитали имеет, имеет форму шара (при этом = 0).

Рис.1. 1s-орбиталь

Орбитали, определяемые квантовыми числами ℓ = 1 и m ℓ = -1, 0 и +1, называются р-орбиталями. Поскольку m ℓ при этом имеет три разных значений, то атом при этом имеет три энергетически эквивалентные р-орбитали (главное квантовое число для них одно и тоже и может иметь значение n =2,3,4,5,6 или 7). р-Орбитали обладают осевой симметрией и имеют вид объёмных восьмёрок, во внешнем поле ориентированных по осям x, y и z (рис.1.2). Отсюда и происхождение символики p x , p y и p z .

Рис.2. р x , p y и p z -орбитали

Кроме того, имеются d- и f- атомные орбитали, для первых ℓ = 2 и m ℓ = -2, -1, 0, +1 и +2, т.е. пять АО, для вторых ℓ = 3 и m ℓ = -3, -2, -1, 0, +1, +2 и +3, т.е. 7 АО.

Четвёртое квантовое m s называется спиновым квантовым числом, было введено для объяснения некоторых тонких эффектов в спектре атома водорода Гаудсмитом и Уленбеком в 1925г. Спин электрона - это угловой момент заряженной элементарной частицы электрона, ориентация которого квантована, т.е. строго ограничена определёнными углами. Эта ориентация определяется значением спинового магнитного квантового числа (s), которое для электрона равно ½ , поэтому для электрона согласно правилам квантования m s = ± ½. В связи с этим к набору из трёх квантовых чисел следует добавить квантовое числоm s . Подчеркнём еще раз, что четыре квантовых числа определяют порядок построения периодической таблицы элементов Менделеева и объясняют, почему в первом периоде только два элемента, во втором и в третьём – по восемь, - в четвёртом – 18 и т д. Однако, чтобы объяснить строение многоэлектронных атомов, порядок заполнения электронных уровней по мере увеличения положительного заряда атома недостаточно иметь представления о четырёх квантовых числах, "управляющих" поведением электронов при заполнении электронных орбиталей, но необходимо знать ещё некоторые простые правила, а именно, принцип Паули, правило Гунда и правила Клечковского.

Согласно принципа Паули в одном и том же квантовом состоянии, характеризуемом определенными значениями четырёх квантовых чисел, не может находиться более одного электрона. Это означает, что один электрон можно в принципе поместить на любую атомную орбиталь. Два электрона могут находиться на одной атомной орбитали только в том случае, если они отличаются спиновыми квантовыми числами.

При заполнении электронами трёх р-АО, пяти d-AO и семи f-AO следует руководствоваться кроме принципа Паули ещё и правилом Гунда: Заполнение орбиталей одной подоболочки в основном состоянии происходит электронами с одинаковыми спинами.

При заполнении подоболочек (p , d , f )абсолютное значение суммы спинов должно быть максимальной .

Правило Клечковского . Согласно правилу Клечковского при заполнении d и f орбиталией электронами должен соблюдаться принцип минимальной энергии. Согласно этому принципу электроны в основном состоянии заполняют орбитали с минимальными уровнями энергии. Энергию подуровня определяют сумма квантовых чисел n + ℓ = Е .

Первое правило Клечковского : сначала заполняются те подуровни, для которых n + ℓ = Е минимальна.

Второе правило Клечковского : в случае равенства n + ℓ для нескольких подуровней идёт заполнение того подуровня, для которого n минимальна .

В настоящее время известно 109 элементов.

2. Энергия ионизации, сродство к электрону и электроотрицательность .

Важнейшими характеристиками электронной конфигурации атома являются энергия ионизации (ЭИ) или потенциал ионизации (ПИ) и сродство атома к электрону (СЭ). Энергией ионизации называют изменение энергии в процессе отрыва электрона от свободного атома при 0 К: А = + + ē . Зависимость энергии ионизации от порядкового номера Z элемента, размера атомного радиуса имеет ярко выраженный периодический характер.

Сродство к электрону (СЭ), представляет собой изменение энергии, которым сопровождается присоединение электрона к изолированному атому с образованием отрицательного иона при 0 К: А + ē = А - (атом и ион находятся в своих основных состояниях). При этом электрон занимает низшую свободную атомную орбиталь (НСАО), если ВЗАО занята двумя электронами. СЭ сильно зависит от их орбитальной электронной конфигурации.

Изменения ЭИ и СЭ коррелируют с изменением многих свойств элементов и их соединений, что используется для предсказания этих свойств по значениям ЭИ и СЭ. Наиболее высоким по абсолютной величине сродством к электрону обладают галогены. В каждой группе периодической таблице элементов потенциал ионизации или ЭИ уменьшается с увеличением номера элемента, что связано с увеличением атомного радиуса и с увеличением количества электронных слоев и что хорошо коррелирует с увеличением восстановительной способности элемента.

В таблице 1 Периодической системы элементов приведены значения ЭИ и СЭ в эВ/на атом. Отметим, что точные значения СЭ известны лишь для немногих атомов, их величины подчёркнуты в таблице 1.

Таблица 1

Первая энергия ионизации (ЭИ), сродство к электрону (СЭ) и электроотрицательность χ) атомов в периодической системе.

χ

0.747

2. 1 0

0, 3 7

1,2 2

χ

0.54

1. 55

-0.3

1. 1 3

0.2

0. 91

1.2 5

-0. 1

0, 55

1.47

0. 59

3.45

0. 64

1 ,60

χ

0. 7 4

1. 89

-0.3

1 . 3 1

1 . 6 0

0. 6

1.63

0.7

2.07

3.61

χ

2.3 6

- 0 .6

1.26(α)

-0.9

1 . 39

0. 18

1.2

0. 6

2.07

3.36

χ

2.4 8

-0.6

1 . 56

0. 2

2.2

χ

2.6 7

2, 2 1

О s

χ – электроотрицательность по Полингу

r - атомный радиус, (из «Лабораторные и семинарские занятия по общей и неорганической химии» , Н.С. Ахметов, М.К. Азизова, Л.И. Бадыгина)

Атом (от греческого atomos - неделимый) - одноядерная, неделимая химическим путем частица химического элемента, носитель свойств вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (количество нейтронов может быть равно или чуть больше или меньше, чем протонов). Протоны и нейтроны называют нуклонами, то есть частицами ядра. Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.). Масса атома в основном определяется массой его ядра, поскольку масса электрона примерно в 1836 раз меньше массы протона и нейтрона и в расчётах редко учитывается. Точное количество нейтронов можно узнать по разности между массой атома и количеством протонов (N =A -Z ). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N), называется нуклидом (это могут быть как разные элементы с одинаковым общим количеством нуклонов (изобары) или нейтронов (изотоны), так и один химический элемент - одно количество протонов, но разное количество нейтронов (изомеры)).

Поскольку в ядре атома сосредоточена практически вся масса, но его размеры ничтожно малы по сравнению с общим объёмом атома, то ядро условно принимается материальной точкой, покоящейся в центре атома, а сам атом рассматривается как система электронов. При химической реакции ядро атома не затрагивается (кроме ядерных реакций), как и внутренние электронные уровни, а участвуют только электроны внешней электронной оболочки. По этой причине необходимо знать свойства электрона и правила формирования электронных оболочек атомов.

Свойства электрона

Перед изучением свойств электрона и правил формирования электронных уровней необходимо затронуть историю формирования представлений о строении атома. Мы не будем рассматривать полную историю становления атомарного строения, а остановимся лишь на самых актуальных и наиболее "верных" представлениях, способных наиболее наглядно показать как располагаются электроны в атоме. Первыми наличие атомов как элементарных составляющих вещества предположили еще древнегреческие философы (если какое-либо тело начать делить пополам, половинку ещё пополам и так далее, то этот процесс не сможет происходить до бесконечности; мы остановимся на частичке, которую уже не сможем поделить, - это и будет атом). После чего история строения атома прошла сложный путь и разные представления, такие как неделимость атома, Томсоновская модель атома и другие. Наиболее близкой оказалась модель атома, предложенная Эрнестом Резерфордом в 1911 году. Он сравнил атом с солнечной системой, где в роли солнца выступало ядро атома, а электроны двигались вокруг него подобно планетам. Размещение электронов на стационарных орбитах было очень важным шагом в понимании строения атома. Однако такая планетарная модель строения атома шла в противоречие с классической механикой. Дело в том, что при движении электрона по орбите он должен был терять потенциальную энергию и в конце концов "упасть" на ядро, и атом должен был прекратить свое существование. Такой парадокс был устранен введением постулатов Нильсом Бором . Согласно этим постулатам, электрон двигался по стационарным орбитам вокруг ядра и при нормальных условиях не поглощал и не испускал энергию. Постулаты показывают, что для описания атома законы классической механики не подходят. Такая модель атома называется моделью Бора-Резерфорда. Продолжением планетарного строения атома является квантово-механическая модель атома, согласно которой мы и будем рассматривать электрон.

Электрон является квазичастицей, проявляя корпускулярно-волновой дуализм: он одновременно является и частицей (корпускула), и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам - способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля:

λ = h m v , {\displaystyle \lambda ={\frac {h}{mv}},}

где λ {\displaystyle \lambda } - длина волны, - масса частицы, - скорость частицы, - постоянная Планка = 6,63·10 -34 Дж·с .

Для электрона невозможно рассчитать траекторию его движения, можно говорить только о вероятности нахождения электрона в том или ином месте вокруг ядра. По этой причине говорят не об орбитах движения электрона вокруг ядра, а об орбиталях - пространстве вокруг ядра, в котором вероятность нахождения электрона превышает 95%. Для электрона невозможно одновременно точно измерить и координату, и скорость (принцип неопределённости Гейзенберга).

Δ x ∗ m ∗ Δ v > ℏ 2 {\displaystyle \Delta x*m*\Delta v>{\frac {\hbar }{2}}}

где Δ x {\displaystyle \Delta x} - неопределённость координаты электрона, Δ v {\displaystyle \Delta v} -погрешность измерения скорости, ħ=h/2π=1.05·10 -34 Дж·с
Чем точнее мы измеряем координату электрона, тем больше погрешность в измерении его скорости, и наоборот: чем точнее мы знаем скорость электрона, тем больше неопределённость в его координате.
Наличие волновых свойств у электрона позволяет применить к нему волновое уравнение Шредингера.

∂ 2 Ψ ∂ x 2 + ∂ 2 Ψ ∂ y 2 + ∂ 2 Ψ ∂ z 2 + 8 π 2 m h (E − V) Ψ = 0 {\displaystyle {\frac {{\partial }^{2}\Psi }{\partial x^{2}}}+{\frac {{\partial }^{2}\Psi }{\partial y^{2}}}+{\frac {{\partial }^{2}\Psi }{\partial z^{2}}}+{\frac {8{\pi ^{2}}m}{h}}\left(E-V\right)\Psi =0}

где - полная энергия электрона, потенциальная энергия электрона, физический смысл функции Ψ {\displaystyle \Psi } - квадратный корень от вероятности нахождения электрона в пространстве с координатами x , y и z (ядро считается началом координат).
Представленное уравнение написано для одноэлектронной системы. Для систем, содержащих более одного электрона, принцип описания остаётся прежним, но уравнение принимает более сложный вид. Графическим решением уравнения Шредингера является геометрия атомных орбиталей. Так, s-орбиталь имеет форму шара, p-орбиталь - форму восьмерки с "узлом" в начале координат (на ядре, где вероятность обнаружения электрона стремится к нулю).

В рамках современной квантово-механической теории электрон описывается набором квантовых чисел: n , l , m l , s и m s . Согласно принципу Паули в одном атоме не может быть двух электронов с полностью идентичным набором всех квантовых чисел.
Главное квантовое число n определяет энергетический уровень электрона, то есть на каком электронном уровне расположен данный электрон. Главное квантовое число может принимать только целочисленные значения больше 0: n =1;2;3... Максимальное значение n для конкретного атома элемента соответствует номеру периода, в котором расположен элемент в периодической таблице Д. И. Менделеева.
Орбитальное (дополнительное) квантовое число l определяет геометрию электронного облака. Может принимать целочисленные значения от 0 до n -1. Для значений дополнительного квантового числа l применяют буквенное обозначение:

значение l 0 1 2 3 4
буквенное обозначение s p d f g

S-орбиталь имеет форму шара, p-орбиталь - форму восьмерки. Остальные орбитали имеют очень сложную структуру, как, например, представленная на рисунке d-орбиталь.

Электроны по уровням и орбиталям располагаются не хаотично, а по правилу Клечковского , согласно которому заполнение электронов происходит по принципу наименьшей энергии, то есть в порядке возрастания суммы главного и орбитального квантовых чисел n +l . В случае, когда сумма для двух вариантов заполнения одинакова, первоначально заполняется наименьший энергетический уровень (например: при n =3 а l =2 и n =4 а l =1 первоначально заполняться будет уровень 3). Магнитное квантовое число m l определяет расположение орбитали в пространстве и может принимать целочисленное значение от -l до +l , включая 0. Для s-орбитали возможно только одно значение m l =0. Для p-орбитали - уже три значения -1, 0 и +1, то есть p-орбиталь может располагаться по трём осям координат x, y и z.

расположение орбиталей в зависимости от значения m l

Электрон обладает собственным моментом импульса - спином, обозначающимся квантовым числом s . Спин электрона - величина постоянная и равная 1/2. Явление спина можно условно представить как движение вокруг собственной оси. Первоначально спин электрона приравнивали к движению планеты вокруг собственной оси, однако такое сравнение ошибочно. Спин - чисто квантовое явление, не имеющее аналогов в классической механике.

Понятие «атом» знакомо человечеству ещё со времен Древней Греции. Согласно высказыванию древних философов, атом представляет собой мельчайшую частицу, входящую в состав вещества.

Электронное строение атома

Атом состоит из положительно заряженного ядра внутри которого находятся протоны и нейтроны. Вокруг ядра по орбитам движутся электроны, каждый из которых можно охарактеризовать набором из четырех квантовых чисел: главного (n), орбитального (l), магнитного (m l) и спинового (m s или s).

Главное квантовое число определяет энергию электрона и размеры электронных облаков. Энергия электрона главным образом зависит от расстояния электрона от ядра: чем ближе к ядру находится электрон, тем меньше его энергия. Другими словами, главное квантовое число определяет расположение электрона на том или ином энергетическом уровне (квантовом слое). Главное квантовое число имеет значения ряда целых чисел от 1 до бесконечности.

Орбитальное квантовое число характеризует форму электронного облака. Различная форма электронных облаков обусловливает изменение энергии электронов в пределах одного энергетического уровня, т.е. расщепление её на энергетические подуровне. Орбитальное квантовое число может имеет значения от нуля до (n-1), всего n значений. Энергетические подуровни обозначают буквами:

Магнитное квантовое число показывает ориентацию орбитали в пространстве. Оно принимает любое целое числовое значение от (+l) до (-l), включая нуль. Число возможных значений магнитного квантового числа равна (2l+1).

Электрон, двигаясь в поле ядра атома, кроме орбитального момента импульса обладает также собственным моментам импульса, характеризующим его веретенообразное вращение вокруг собственной оси. Это свойства электрона получило название спина. Величину и ориентацию спина характеризует спиновое квантовое число, которое может принимать значения (+1/2) и (-1/2). Положительное и отрицательное значения спина связаны с его направлением.

До того, как все вышеописанное стало известно и подтверждено экспериментально существовало несколько моделей строения атома. Одна из первых моделей строения атома была предложена Э. Резерфордом, который в опытах по рассеянию α-частиц показал, что почти вся масса атома сосредоточена в очень малом объеме - положительно заряженном ядре. Согласно его модели, вокруг ядра на достаточно большом расстоянии движутся электроны, причем их число таково, что в целом атом электронейтрален.

Развивать модель строения атома Резерфорда стал Н. Бор, который в своем исследовании также объединил учения Эйнштейна о световых квантах и квантовую теорию излучения Планка. Завершили начатое и представили миру современную модель строения атома химического элемента Луи де Бройль и Шредингер.

Примеры решения задач

ПРИМЕР 1

Задание Укажите количество протонов и нейтронов, которые содержатся в ядрах азота (атомный номер 14), кремния (атомный номер 28) и бария (атомный номер 137).
Решение Количество протонов в ядре атома химического элемента определяется по его порядковому номеру в Периодической таблице, а количество нейтронов - это разница между массовым числом (М) и зарядом ядра (Z).

Азот:

n(N)= M -Z = 14-7 = 7.

Кремний:

n(Si)= M -Z = 28-14 = 14.

Барий:

n (Ba)= M -Z = 137-56 = 81.

Ответ Количество протонов в ядре азота равно 7, нейтронов - 7; в ядре атоме кремня протонов 14, нейтронов - 14; в ядре атоме бария протонов 56, нейтронов - 81.

ПРИМЕР 2

Задание Расположите энергетические подуровни в последовательности их заполнения электронами:

а) 3р, 3d, 4s, 4р;

б) 4d, 5s, 5р, 6s;

в) 4f, 5s, 6р; 4d, 6s;

г) 5d, 6s, 6р, 7s, 4f.

Решение Энергетические подуровни заполняются электронами в соответствии с правилами Клечковского. Обязательным условием является минимальное значение суммы главного и орбитального квантового чисел. Для s-подуровня характерно число 0, p - 1, d - 2 и f-3. Второе условие - первым заполняется подуровень с наименьшим значением главного квантового числа.
Ответ а) Орбиталям 3р, 3d, 4s, 4р будут соответствовать числа 4, 5, 4 и 5. Следовательно заполнение электронами будет происходить в следующей последовательности: 3p, 4s, 3d, 4p.

б) Орбиталям 4d, 5s, 5р, 6s будут соответствовать числа 7, 5, 6 и 6. Следовательно заполнение электронами будет происходить в следующей последовательности: 5s, 5p, 6s, 4d.

в) Орбиталям 4f, 5s, 6р; 4d, 6s будут соответствовать числа 7, 5, 76 и 6. Следовательно заполнение электронами будет происходить в следующей последовательности: 5s, 4d, 6s, 4f, 6р.

г) Орбиталям 5d, 6s, 6р, 7s, 4f будут соответствовать числа 7, 6, 7, 7 и 7. Следовательно заполнение электронами будет происходить в следующей последовательности: 6s, 4f, 5d, 6р, 7s.

Атом – мельчайшая частица вещества, состоящая из ядра и электронов. Строение электронных оболочек атомов определяется положением элемента в Периодической системе химических элементов Д. И. Менделеева.

Электрон и электронная оболочка атома

Атом, который в целом является нейтральным, состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки (электронное облако), при этом, суммарные положительные и отрицательные заряды равны по абсолютной величине. При вычислении относительной атомной массы массу электронов не учитывают, так как она ничтожно мала и в 1840 раз меньше массы протона или нейтрона.

Рис. 1. Атом.

Электрон – совершенно уникальная частица, которая имеет двойственную природу: он имеет одновременно свойства волны и частицы. Они непрерывно движутся вокруг ядра.

Пространство вокруг ядра, где вероятность нахождения электрона наиболее вероятна, называют электронной орбиталью, или электронным облаком. Это пространство имеет определенную форму, которая обозначается буквами s-, p-, d-, и f-. S-электронная орбиталь имеет шаровидную форму, p-орбиталь имеет форму гантели или объемной восьмерки, формы d- и f-орбиталей значительно сложнее.

Рис. 2. Формы электронных орбиталей.

Вокруг ядра электроны расположены на электронных слоях. Каждый слой характеризуется расстоянием от ядра и энергией, поэтому электронные слои часто называют электронными энергетическими уровнями. Чем ближе уровень к ядру, тем меньше энергия электронов в нем. Один элемент отличается от другого числом протонов в ядре атома и соответственно числом электронов. Следовательно, число электронов в электронной оболочке нейтрального атома равно числу протонов, содержащимся в ядре этого атома. Каждый следующий элемент имеет в ядре на один протон больше, а в электронной оболочке – на один электрон больше.

Вновь вступающий электрон занимает орбиталь с наименьшей энергией. Однако максимальное число электронов на уровне определяется формулой:

где N – максимальное число электронов, а n – номер энергетического уровня.

На первом уровне может быть только 2 электрона, на втором – 8 электронов, на третьем – 18 электронов, а на четвертом уровне – 32 электрона. На внешнем уровне атома не может находится больше 8 электронов: как только число электронов достигает 8, начинает заполняться следующий, более далекий от ядра уровень.

Строение электронных оболочек атомов

Каждый элемент стоит в определенном периоде. Период – это горизонтальная совокупность элементов, расположенных в порядке возрастания заряда ядер их атомов, которая начинается щелочным металлом, а заканчивается инертным газом. Первые три периода в таблице – малые, а следующие, начиная с четвертого периода – большие, состоят из двух рядов. Номер периода, в котором находится элемент имеет физический смысл. Он означает, сколько электронных энергетических уровней имеется в атоме любого элемента данного периода. Так, элемент хлор Cl находится в 3 периоде, то есть его электронная оболочка имеет три электронных слоя. Хлор стоит в VII группе таблицы, причем в главной подгруппе. Главной подгруппой называется столбец внутри каждой группы, который начинается с 1 или 2 периода.

Таким образом, состояние электронных оболочек атома хлора таково: порядковый номер элемента хлора – 17, что означает, что атом имеет в ядре 17 протонов, а в электронной оболочке – 17 электронов. На 1 уровне может быть только 2 электрона, на 3 уровне – 7 электронов, так как хлор находится в главной подруппе VII группы. Тогда на 2 уровне находится:17-2-7=8 электронов.

Документальные учебные фильмы. Серия «Физика».

Атом (от греческого atomos - неделимый) - одноядерная, неделимая химическим путем частица химического элемента, носитель свойства вещества. Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (протоны и нейтроны называют нуклонами). Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.).

Масса атома определяется массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается. Количество нейтронов можно узнать по разности между массой атома и количеством протонов (N=A-Z). Вид атомов какого-либо химического элемента с ядром, состоящим из строго определённого числа протонов (Z) и нейтронов (N) называется нуклидом.

Перед изучением свойств электрона и правил формирования электронных уровней, необходимо затронуть историю формирования представлений о строении атома. Мы не будем рассматривать полную историю становления атомарного строения, а остановимся лишь на самых актуальных и наиболее "верных" представлениях, способных наиболее наглядно показать как располагаются электроны в атоме. Первыми наличие атомов как элементарных составляющих вещества, предположили еще древнегреческие философы. После чего история строения атома прошла сложный путь и разные представления, такие как неделимость атома, Томсоновская модель атома и другие. Наиболее близкой оказалась модель атома, предложенная Эрнестом Резерфордом в 1911 году. Он сравнил атом с солнечной системой, где в роли солнца выступало ядро атома, а электроны двигались вокруг него подобно планетам. Размещение электронов на стационарных орбитах было очень важным шагом в понимании строения атома. Однако такая планетарная модель строения атома шла в противоречие с классической механикой. Дело в том, что при движении электрона по орбите он должен был терять потенциальную энергию и в конце концов "упасть" на ядро и атом должен был прекратить свое существование. Такой парадокс был устранен введением постулатов Нильсом Бором. Согласно этим постулатам электрон двигался по стационарным орбитам вокруг ядра и при нормальных условиях не поглощал и не испускал энергию. Постулаты показывают, что для описания атома законы классической механики не подходят. Такая модель атома называется моделью Бора-Резерфорда. Продолжением планетарного строения атома является квантово-механическая модель атома, согласно которой мы и будем рассматривать электрон.

Электрон является квазичастицей проявляя корпускулярно-волновой дуализм. Он одновременно является и частицей (корпускула) и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам - способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама