THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

2.1. Устройство рабочего колеса

На рисунке 4 приведен продольный разрез (вдоль оси вала) рабочего колеса центробежного насоса. Межлопастные каналы колеса образуются двумя фасонными дисками 1, 2 и несколькими лопастями 3. Диск 2 называется основным (ведущим) и составляет одно единое целое со ступицей 4. Ступица служит для жесткой посадки колеса на вал 5 насоса. Диск 1 называется покрывающим или передним. Он составляет единое целое с лопастями в насосах.

Рабочее колесо характеризуется следующими геометрическими параметрами: диаметром входа D 0 потока жидкости в колесо, диаметрами входаD 1 и выходаD 2 с лопатки, диаметрами валаd в и ступицыd ст , длиной ступицыl ст , шириной лопатки на входеb 1 и выходеb 2 .

d стd в

l ст

Рисунок 4

2.2. Кинематика потока жидкости в колесе. Треугольники скоростей

Жидкость подводится к рабочему колесу в осевом направлении. Каждая частица жидкости движется с абсолютной скоростью с .

Попав в межлопастное пространство, частицы принимают участие в сложном движении.

Движение частицы, вращающейся вместе с колесом, характеризуется вектором окружной (переносной) скорости u . Эта скорость направлена по касательной к окружности вращения либо перпендикулярно к радиусу вращения.

Частицы перемещаются также относительно колеса, и это движение характеризуется вектором относительной скорости w , направленной по касательной к поверхности лопатки. Эта скорость характеризует движение жидкости относительно лопатки.

Абсолютная скорость движения частиц жидкости равна геометрической сумме векторов окружной и относительнойr скоростей

c = w+ u.

Эти три скорости образуют треугольники скоростей, которые можно построить в любом месте межлопастного канала.

Для рассмотрения кинематики потока жидкости в рабочем колесе принято строить треугольники скоростей на входной и выходной кромках лопатки. На рисунке 5 приведен поперечный разрез колеса насоса, на котором построены треугольники скоростей на входе и выходе межлопастных каналов.

w 2β 2

Рисунок 5

В треугольниках скоростей угол α – это угол между векторами абсолютной и окружной скоростей, β – угол между вектором относительной и обратным продолжением вектора окружной скорости. Углы β1 и β2 называются углами входа и выхода с лопатки.

Окружная скорость жидкости равна

u = π 60 Dn,

где n – частота вращения рабочего колеса, об/мин.

Для описания потока жидкости используются также проекции скоростей с u ис r . Проекцияс u – это проекция абсолютной скорости на направление окружной скорости,с r – проекция абсолютной скорости на направление радиуса (меридиональная скорость).

Из треугольников скоростей следует

с1 u = с1 cos α 1 ,

с2 u = с2 cos α 2 ,

с 1r= с 1sin α 1,

с 2r= с 2sin α 2.

Треугольники скоростей удобнее строить вне рабочего колеса. Для этого выбирается система координат, в которой вертикальное направление совпадает с направлением радиуса, а горизонтальное – с направлением окружной скорости. Тогда в выбранной системе координат треугольники входа (а) и выхода (б) имеют вид, показанный на рисунке 6.

с 2r

Рисунок 6

Треугольники скоростей позволяют определить величины скоростей и проекций скоростей, необходимых для расчета теоретического напора жидкости на выходе колеса нагнетателя

H т = u2 c2 u g − u1 c1 u .

Данное выражение называется уравнением Эйлера. Действительный напор определяется выражением

Н = µ ηг Н т ,

где µ – коэффициент, учитывающий конечное число лопастей, ηг – гидравлический КПД. В приближенных расчетах µ ≈ 0,9. Более точное его значение рассчитывается по формуле Стодолы.

2.3. Типы рабочих колес

Конструкция рабочего колеса определяется коэффициентом быстроходности n s , который является критерием подобия для нагнетательных устройств и равен

n Q n s = 3,65 H 3 4 .

В зависимости от величины коэффициента быстроходности рабочие колеса разделяют на пять основных типов, которые показаны на рисунке 7. Каждому из приведенного типа колеса соответствуют определенные форма колеса и соотношение D 2 /D 0 . При малыхQ и большихH , соответствующих малым значениямn s , колеса имеют узкую проточную полость и самое большое отношениеD 2 /D 0 . С увеличениемQ и уменьшениемH (n s возрастает) пропускная способность колеса должна расти, и поэтому его ширина увеличивается. Коэффициенты быстроходности и соотношенияD 2 /D 0 для различных типов колес приведены в табл. 3.

Рисунок 7

Таблица 3

Коэффициенты быстроходности и соотношения D 2 /D 0 для колес

различной быстроходности

Тип колеса

Коэффициент бы-

Соотношение D 2 /D 0

строходности n s

Тихоходное

40÷ 80

Нормальной

80÷ 150

быстроходности

Быстроходное

150÷ 300

1,8 ÷ 1,4

Диагональное

300÷ 500

1,2 ÷ 1,1

500 ÷ 1500

2.4. Упрощенный способ расчета рабочего колеса центробежного насоса

Заданы производительность насоса, давления на поверхностях всасываемой и нагнетаемой жидкости, параметры подключенных к насосу трубопроводов. Задача состоит в расчете колеса центробежного насоса, и включает в себя расчет основных его геометрических размеров и скоростей в проточной полости. Необходимо также определить предельную высоту всасывания, обеспечивающую бескавитационный режим работы насоса.

Начинается расчет с выбора конструктивного типа насоса. Для подбора насоса необходимо рассчитать его напор Н . По известнымН иQ , используя полные индивидуальные либо универсальные характеристики, приведенные в каталогах или литературных источниках (например , подбирается насос. Выбирается частота вращенияn вала насоса.

Для определения конструктивного типа рабочего колеса насоса рассчитывается коэффициент быстроходности n s .

Определяется полный КПД насоса η =η м η г η о . Механический КПД принимается в пределах 0,92-0,96. У современных насосов значенияη о лежат в пределах 0,85-0,98, аη г – в пределах 0,8- 0,96.

Коэффициент полезного действия η о можно рассчитать по ориентировочному выражению

d в = 3 М (0,2 τ доп ) ,

η0 =

1 + аn − 0.66

Для расчета гидравлического КПД можно использовать фор-

ηг =1 −

(lnD

− 0,172) 2

где D 1п – приведенный диаметр на входе, соответствующий живому

рабочее колесо и

определяемый выражением

D 2 − d

D 0 иd ст – соответственно диаметр входа жид-

кости в рабочее колесо и диаметр ступицы колеса. Приведенный диаметр связан с подачей Q иn соотношениемD 1п = 4,25 3 Q n .

Потребляемая мощность насоса равна N в = ρ QgH η . Она связана с крутящим моментом, действующим на вал, соотношениемM = 9,6 N в / n . В данном выражении единицы измеренияn –

На вал насоса в основном действует скручивающее усилие, обусловленное моментом М, а также поперечные и центробежные силы. По условиям скручивания диаметр вала рассчитывается по формуле

где τ - напряжение кручения. Его величина может задаваться в диа-

пазоне от 1,2·107 до 2,0·107 Н/м2 .

Диаметр ступицы принимается равным d ст = (1,2÷ 1,4)d в , ее длина определяется из соотношенияl ст = (1÷ 1,5)d ст .

Диаметр входа в колесо насоса определяется по приведенному

диаметру D 0 = D 1п = D 1п + d ст (D 02 − d ст2 ) η о.

Угол входа находится из треугольника скоростей входа. Предполагая, что скорость входа потока жидкости в рабочее колесо равна скорости входа на лопатку, а также при условии радиального входа, т.е. с0 = с1 = с1 r , можно определить тангенс угла входа на лопатку

tg β1 =c 1 . u 1

С учетом угла атаки i угол лопасти на входеβ 1 л =β 1 + i . Потери

энергии в рабочем колесе зависят от угла атаки. Для отогнутых назад лопаток оптимальный угол атаки лежит в диапазоне от -3 ÷ +4o .

Ширина лопасти на входе определяется на основании закона сохранения массы

b 1 = πQ µ,

D 1c 1 1

где µ 1 – коэффициент стеснения входного сечения колеса кромками лопастей. В ориентировочных расчетах принимаетсяµ 1 ≈ 0,9.

При радиальном входе в межлопастные каналы (c1u = 0) из уравнения Эйлера для напора можно получить выражение для окружной скорости на выходе колеса

ctgβ

ctgβ

Часто в сельском хозяйстве, в промышленности и в частных домах используют насосное оборудование. Их предназначение заключается в перемещении разных видов жидкости. Именно поэтому насосные агрегаты имеют много разновидностей,особое место среди которых занимают центробежные насосы.

Основной рабочий элемент этого оборудования – рабочее колесо. В данной статье подробно рассматривается понятие рабочего колеса, устройство этого конструктивного элемента, а также его виды.

1 Понятие рабочего колеса и его устройство

Рабочее колесо (крыльчатка) насоса – основной рабочий элемент насосного оборудования, который передаёт энергию, получаемую от мотора. Внешний и внутренний диаметр по лопаткам, форму лопаток, ширину колеса можно определить с помощью расчетов.

Главное назначение рабочего колеса насоса – генерирование центробежной силы , которая создаёт давление, которое приводит в движение поток жидкости.

В конструкцию рабочего колеса входят следующие основные элементы:

  • передний (ведущий) диск;
  • задний (ведомый) диск;
  • крыльчатка, которая состоит из лопастей, находящихся между дисками.

Лопасти крыльчатки насосного оборудования, зачастую, имеют изогнутость к стороне, противоположной к направлению, к которому они движутся.

1.1 Функции рабочего колеса насоса

Принцип работы крыльчатки: когда начинается рабочий цикл жидкость накапливается между лопастей одновременно с началом вращения крыльчатки. Под воздействием вращения появляется центробежная сила, способствующая появлению давления; затем жидкость отходит от середины крыльчатки и постепенно прижимается к стенкам. Перекачиваемая среда, под напором выводится наружу через нагнетательный патрубок, при этом в середине крыльчатки создается минимальное давление, способствующее поступлению следующей порции жидкости для крыльчатки.

Также следует обратить внимание, что данный процесс происходит циклично, благодаря этому работа насосного оборудования стабильная и бесперебойная.

1.2 Виды и отличия

Рабочие колеса бывают таких типов:

  • открытые;
  • закрытые;
  • полузакрытые.

Центробежный насос с открытым рабочим колесом на сегодняшний день практически не применяют, так как их КПД < 40%. Но на немногих землесосных снарядах давней постройки такие колеса еще эксплуатируются. Но данный тип крыльчаток имеет и преимущества.Они гораздо менее подвержены засорению, и их весьма легко можно защитить от износа стальными накладками. Также отремонтировать данный тип колес можно очень просто.

Полузакрытый тип имеет диск со стороны, которая противоположная всасыванию. Данные типы не применяются в больших грунтовых агрегатах, но применяются в небольших насосах, для которых вопрос о засоряемости является краеугольным камнем.

Закрытые типы выдают наивысший КПД, их применяют на всех современных насосных оборудованиях. Они обладают высокой прочностью, но их защита от износа и ремонт гораздо сложнее, чем полузакрытых и открытых крыльчаток.

Закрытое колесо имеет от двух до шести рабочих лопаток. На его наружной поверхности дисков обычно делают радиальные выступы. Либо выступы, которые повторяют очертание лопаток.

Крыльчатки чаще всего производят цельнолитыми. Но в Соединенных Штатах Америки их иногда производят сварными, из литых деталей. В случае применения трудно обрабатываемых твердых сплавов крыльчатки, иногда, делают с отъемной ступицей, изготовливаемой из более мягкого материала.

1.3 Наиболее часто применяемые виды посадок

Конусная (коническая) посадка– позволяет легко установить и снять крыльчатку с вала насоса. Недостатком такой посадки является менее точное положение крыльчатки относительно корпуса насосного агрегата в продольном направлении, чем при цилиндрической посадке. На вал рабочее колесо посажено жестко, поэтому оно обездвижено. К тому же коническая посадка, как правило, дает большие биения рабочего колеса, а это, в свою очередь, негативно влияет на сальниковые набивки и .

Цилиндрическая посадка – обеспечивает точное расположение крыльчатки на валу. Фиксация колеса на валу производится за счет 1-ой или нескольких шпонок. Данная посадка используется в вихревых насосах, и погружных вихревых насосах. Недостатком такой посадки является потребность точнейшей обработки, как вала насоса, так и самого отверстия в его ступице.

Посадка шестигранная (крестообразная) – как правило, применяется в насосном оборудовании для скважин. Эта посадка обеспечивает простую установку и снятие крыльчатки. Она прочно фиксирует её на валу в оси его вращения. Посредством специальных шайб регулируются зазоры в колесах диффузорах.

Посадка в виде шестигранной звезды -применяется в вертикальных и горизонтальных многоступенчатых высоконапорных насосных агрегатов, в которых крыльчатки изготавливаются из нержавейки. Данная конструкция является самой сложной, она требует высочайшего класса обработки как вала, так и крыльчатки. Она прочно фиксирует рабочее колесо на оси вращения вала. Зазоры в диффузорах регулируются посредством втулок.

2 Причины и симптомы поломки колеса центробежных насосов

Чаще всего причиной поломок рабочего колеса становится кавитация- парообразование и появление пузырьков пара в жидкости, что приводит к эрозии металла, вследствие присутствия в пузырьках жидкости высокой химической агрессивности газа.

Основные причиныпоявления кавитации:

  1. Температура > 60°C
  2. Большая протяженность и недостаточно большой диаметр всасывающего напора.
  3. Неплотные соединения на всасывающем напоре.
  4. Загрязнение всасывающего напора.

Признаки поломки:

  1. Вибрация.
  2. Потрескивания во время всасывания.
  3. Шумы.

Совет:в случае присутствия в работе насоса вышеуказанных признаков, лучше прекратить его использование. Так как кавитация снижает КПД устройства, его напор и производительность, детали насосного агрегата становятся шероховатыми, и в последствии будет необходим ремонт или покупка нового аппарата.

2.1 Ремонт

Если прибор, все же отказался работать, его можно починить своими руками. Для необходимо выполнить его разборку:

  1. Первым шагом с помощью специального съемщика снимают полумуфту.
  2. Следующим шагом до упора разгрузочного диска направляют ротор в сторону, которая производит всасывание.
  3. Помечают расположение стрелки сдвига оси.
  4. Разбирают подшипники, вынимают вкладыши.
  5. Посредством съемщика вытаскивают разгрузочный диск.
  6. При помощи отжимных винтов снимают рабочее колесо с вала.

В случае если материал – сталь, если колесо стерлось, то сперва его направляют, а затем вытачивают на токарном станке. При сильной изношенности колеса его снимают, после чего приваривают новое.

В случае если материал – чугун, если колесо стерлось, то необходимые места заливают медью, а потом протачивают, но чугунные колеса, как правило, просто меняют.

Последним шагом насос собирают обратно в такой последовательности:

  1. Протирают детали центробежного насоса.
  2. Если есть заусенцы или забоины, их устраняют.
  3. Крыльчатку собирают на валу.
  4. Ставят на место разгрузочный диск.
  5. Устанавливают мягкую набивку сальников.
  6. Закручивают гайки.
  7. Обкатывают сальник.
  8. До упора разгрузочного диска в пятку подают ротор.

3 Основные характеристики современных центробежных насосов

Наилучшими представителями современных насосов являются: погружной насос с периферийным рабочим колесом Calpeda серии B-VT, а также, самовсасывающий насосный агрегат 1СВН-80А и электронасос 1АСВН-80А.

3.1 Предназначение насосов CALPEDA B-VT

Насосы CALPEDA B-VT применяют для перекачки чистых (для загрязненных жидкостей можно применить полупогружные насосы Calpeda VAL или Calpeda SC) невзрывоопасных жидкостей, в которых отсутствуют абразивные, взвешенные или высокоагрессивные для материалов, из которых изготовлен насос, частицы.

Благодаря небольшим размерам эти электронасосы весьма хорошо подходят для установки в разных устройствах и аппаратах систем охлаждения, циркуляции и кондиционирования.

Эксплуатационные ограничения насосных агрегатов CALPEDA B-VT

  1. Температура жидкости: для воды <90 °C, для масла < 150°C.
  2. Температура окружающей среды< 40°C.
  3. Непрерывный режим использования.

Самовсасывающее насосное оборудование 1СВН-80А и 1АСВН-80А. применяется для перекачки не загрязненной жидкости: воды, спирта, дизельного топлива, бензина, керосина и тому подобной нейтральной жидкости вязкостью <2⋅10-5 м 2 /с температурой -40 – 50 °Cи плотностью <1000 кг/м 3 .

Насосные агрегаты 1СВН-80А производятся правого и левого вращения, если смотреть со стороны окончания вала. В устройстве левого вращения приводной конец вала располагается со стороны всасывающего патрубка, направление движения вала идёт против часовой стрелки.

В аппарате правого вращения приводное окончание вала расположенное со стороны напорного патрубка, вращение вала идёт по часовой стрелке. Необходимо, чтоб направление движения вала совпадало с направлением стрелки на напорной секции насосного оборудования (проверяется посредством кратковременного пробного пуска привода устройства).

3.2 Моделирование рабочего колеса в FlowVision (видео)

В повседневной жизни среди различных устройств, которые были созданы для перекачивания всевозможных жидкостей, наиболее эффективным и практичным, не без основания, считается центробежный насос. Простота конструкции, в сочетании с высокой производительностью и возможностью создать большое давление, обусловили широкое применение такого агрегата почти во всех сферах жизнедеятельности современного человека.

К этому типу оборудования относятся и большинство насосных станций или бытовых помп, которые применяются для устройства в частных строениях автономного водопровода и для полива дачных участков.

Принцип действия таких устройств основывается на физическом законе возникновения центробежной силы, которая возникает при вращательном воздействии лопастей колеса на жидкость. Чтобы лучше понять принцип работы насоса нужно досконально изучить основные типы и конструктивную особенность этого агрегата.

Классификация центробежных насосов

Центробежные насосы условно можно классифицировать по ряду конструктивных характеристик.

По количеству ступеней:

По числу дисков рабочего колеса:

  • Только с диском в задней части рабочего колеса.
  • С диском в задней и передней части колеса. Такие устройства используются для перекачки густой жидкости или в водопроводных сетях низкого давления.

По направлению оси вращения:

  • С валом горизонтального расположения. Такие насосы, из-за простоты обслуживания, считаются наиболее распространёнными моделями.
  • Модели с валом вертикального расположения требуют намного меньше места для установки, так как мотор располагается над корпусом. Большинство скважинных насосов относятся к такому типу, из-за стеснённых условий их работы. Существенным недостатком таких моделей считается сложность в обслуживании и ремонте насосов, т. к. приходится снимать двигатель.

По создаваемому давлению воды насосы бывают:

  • Высокого давления (от 0,6 МПа).
  • Среднего давления (0,2–0,6 МПа).
  • Низкого давления (до 0,2 МПа).

По способу установки:

По способу забора воды:

  • Самовсасывающие. Такие насосы способны поднимать воду с глубины около 8 метров на практике, а теоретически считается 10,34 метра. Неудобством эксплуатации агрегата считается необходимость, перед запуском, заполнять систему водой. Причём и армированный всасывающий шланг так же. Важнейшим элементом является обратный клапан, который удерживает воду, при кратковременных паузах в работе.
  • Насосы нормального всасывания. Этот тип насосов включает в себя все погружные агрегаты, а также и поверхностные, в которые жидкость поступает самотёком. Вода в полость такого насоса заливается только при первом его запуске.

По скорости вращения:

  • Тихоходные.
  • Нормального хода.
  • Высокоскоростные (быстроходные) – крыльчатка в таких агрегатах находится на втулке.

По назначению:

  • Водопроводные.
  • Канализационные.

Характеристика центробежного насоса

Несмотря на огромное разнообразие моделей агрегатов для перекачивания жидкости, существуют несколько основных характеристик, основываясь на которые, можно выбрать подходящую систему в конкретном случае.

Основными рабочими параметрами считаются:

  • Производительность.
  • Потребляемая мощность.
  • Напор (давление на выходе).

Особенностью насосов центробежного типа является зависимость их производительности от напора . Такую зависимость называют напорной или главной характеристикой насоса. Эта характеристика в паспорте изделия указывается в графическом изображении, реже в форме таблицы. Если вы хотите решить вопрос оптимального выбора модели, то сначала нужно определить необходимый напор, который складывается из нужной высоты подъёма жидкости, плюс гидравлическое сопротивление системы, плюс давление, необходимое в самой удалённой точке водозабора.

Выбранная модель насоса будет являться оптимальной, если необходимые производительность и напор будут изображаться в середине главной характеристики.

Детали центробежного насоса

Современные перекачивающие агрегаты центробежного типа имеют приблизительно одинаковое конструктивное построение. Они имеют рабочий орган, представляющий собой колесо, и корпус. На рабочем колесе расположены специальные лопасти, при помощи которых и перемещается вода внутри прибора. За счёт вращения лопастей создаётся центробежная сила, перемещающая жидкость к выпускному клапану, создавая определённое давление, за счёт которого и выталкивается вода наружу.

Довольно часто на таких агрегатах устанавливаются и другие конструктивные приспособления, которые конструкцию насосов делают универсальной:

Рабочее колесо центробежного насоса

Рабочее колесо любого центробежного насоса считается главной частью такой конструкции. В зависимости от места работы насоса, от мощности установленного двигателя и от характера перекачиваемой жидкости рабочее колесо может различаться:

Рабочий вал

Эта деталь центробежного насоса является самой восприимчивой к повреждениям во время работы. Установку вала необходимо производить с точной центровкой и балансировкой. Валы могут быть:

  • Гибкого вида, применяются при работе двигателя на повышенных оборотах.
  • Жёсткие валы находят применение при нормальных оборотах мотора.

Изготавливают рабочие валы из легированной, кованной и нержавеющей стали.

Принцип работы центробежного насоса

Принцип работы устройства для перекачки жидкости центробежного типа достаточно прост. Под действием вращающегося рабочего колеса создаются силы центробежного характера, перемещающие потоки воды. Само рабочее колесо плотно насажено на рабочий вал агрегата. А он, в свою очередь, при помощи магнитной муфты соединён с электрическим двигателем системы. Двигатель вращает рабочее колесо, что и создаёт возможность перемещения жидкости. Более удобного и простого метода перекачки жидкости, пока ещё не разработала современная наука.

Преимущества применения

Существует два основных вида преимуществ использования агрегатов центробежного типа – конструктивные и функциональные.

Простота схемы центробежного насоса позволяет произвести установку всего оборудования в относительно небольшом корпусе , что обуславливает их компактность и сравнительно малую массу. Конечно, габариты и вес агрегата напрямую зависят от мощности установленного двигателя. Такой прибор легко перемещать и одному человеку. Применение такого типа оборудования считается надёжным и долговечным.

Основным функциональным достоинством такого типа агрегатов считается возможность плавной подачи жидкости, что достигается использованием системы защиты от гидроударов. Запуск центробежных насосов производится легко.

Применение на промышленных объектах

Конструкция центробежных агрегатов позволяет их монтировать в тех местах, где установка другого оборудования трудноосуществима, из-за их больших габаритов. Применение таких систем перекачки жидкости, получило огромное распространение в нефтяной и химической отрасли народного хозяйства. Они способны перекачивать под давлением различные смеси, тяжёлые компоненты, нефтепродукты, кислоты и многие другие жидкости, которые считаются химически активными веществами.

Способность поддерживать постоянное давление, при различных температурах жидкости, позволяет широко применять подобные агрегаты для создания принудительной циркуляции в отопительных системах.

Возможность работы с загрязнёнными и чистыми жидкостями, обуславливает широкое применение таких систем в прокачке скважин после завершения бурения.

Правила эксплуатации центробежных систем

Чтобы центробежный агрегат послужил долго и безотказно, рекомендуется устанавливать в систему различные измерительные и контрольные приборы , опираясь на показания которых можно регулировать оптимальный режим работы оборудования.

Стремление к экономии энергии и реализации, по возможности, равномерного проведения технологических процессов в очистных сооружениях приводит к необходимости применения насосов с регулированием частоты вращения их рабочих колес. Однако при слишком малой частоте вращения возможно закупоривание как рабочего колеса, так и вертикальных трубопроводов, если не учитываются предельные значения скорости потока в сечении трубы. Расширение канализационных сетей требует перекачивания на большие расстояния сточных вод до ближайшей главной насосной станции или очистного сооружения. В напорных канализационных системах под большим давлением перекачиваются небольшие количества жидкости. Для исключения закупорок с небольшими геометрическими размерами проточной части требуются специальные технические решения. Необходимость сокращения затрат на техническое обслуживание все чаще приводит к отказу от применения сороудерживающих решеток, что предъявляет весьма высокие требования к канализационным насосам. Различные мероприятия по экономии воды и изменившиеся санитарно-гигиенические условия в цивилизованных промышленно развитых странах значительно повысили содержание твердых и волокнистых частиц в сточных водах и, соответственно, потребовали более высокую защиту насосов от закупоривания. Это означает, что доля воды в транспортирующей среде значительно уменьшилась относительно содержания волокнистых и твердых частиц. Особенно серьезной эта проблема становится после засушливых летних периодов. Волокна и твердые частицы могут осаждаться в коллекторах и сточных трубах и при последующем ливне смываться в виде комков на насосную станцию. В этом случае при неправильном выборе геометрической формы рабочего колеса возникает опасность закупоривания насосов. Различают два типа закупоривания:
твердыми предметами − нередко в насосы попадают твердые предметы: древесные отходы, игрушки или другие бытовые отходы. Примерно такие же твердые образования могут возникать в результате конгломерации мелких твердых частиц в крупные образования;
волокнами − образующимися, прежде всего, из бытовых отходов, предметов гигиены и промышленных отходов любого рода. Они скапливаются в зазоре между рабочим колесом и корпусом у входной части диска рабочего колеса или во всасывающем отверстии рабочего колеса.

На рис. 1 показано сечение типичной проточной части канализационного насоса. При сильном абразивном износе щелевого кольца корпуса увеличиваются утечки с напорной стороны в сторону всасывания, что приводит к проникновению волокон в зазор между корпусом и рабочим колесом. В экстремальных случаях эти скопления волокон в зазоре могут привести к торможению рабочего колеса. Нередко волокна кратковременно отлагаются на входной кромке рабочего колеса. При правильной геометрической форме входной кромки эти волокна вскоре смываются с рабочего колеса и выносятся из насоса. Если же форма входной кромки другая, то скопления волокон могут привести к полной закупорке всасывающего отверстия. Даже современные насосы могут оказаться ненадежными при неправильно выбранной геометрической форме рабочего колеса, не соответствующей конкретному случаю применения или специфическому составу сточных вод. Геометрические формы рабочих колес канализационных насосов представлены на рис. 2.


Нередко состав коммунальных сточных вод заранее не известен и может измениться после подключения к канализационной сети нового пользователя. Сточные воды подразделяются на дождевую воду, загрязненную воду и шлам. Для перекачивания шламов с содержанием сухого остатка более 5% на очистных сооружениях в настоящее время применяются преимущественно объемные, например эксцентриковые шнековые насосы. Центробежные насосы используются, как правило, для перекачивания загрязненных вод − коммунальных, бытовых и промышленных, а также сельскохозяйственных. Однако для этих видов сточных вод точно не определены измеряемые параметры. Они различаются разным содержанием газа, волокон, сухой субстанции и песка. Поэтому условия перекачивания сточных вод должны тщательно анализироваться для каждого отдельного случая. Общие указания или универсальные рекомендации возможны лишь в ограниченной степени. В табл. 1 приведены основные параметры перекачиваемых сточных вод и шламов.


На рис. 3 представлены значения КПД различных типов рабочих колес для одного расчетного режима. Видно, что между открытыми и закрытыми однолопастными рабочими колесами, так же как между открытыми и закрытыми двухканальными рабочими колесами различия несущественны (3−5%). Применение двухканальных рабочих колес дает незначительное увеличение КПД − порядка 2%. Для определения максимально достижимого КПД были проведены всесторонние сравнения известных проточных частей канализационных насосов. Диаграммы на рис. 4 показывают наилучшие значения КПД насосов наиболее часто применяемых типоразмеров с условным проходом DN 80, DN 100 и DN 150. У насосов со свободновихревыми рабочими колесами при всех типоразмерах максимально достижимый КПД составляет 55%. Значения КПД однолопастных и двухканальных рабочих колес закрытого или открытого типа находятся в диапазоне от 75 до 85%. Только при относительно высокой быстроходности и сравнительно больших расходах (типоразмер DN 150), с открытым однолопастным рабочим колесом можно достичь повышения КПД на 3%. Путем направленной гидравлической оптимизации закрытого двухканального рабочего колеса удалось получить очень высокий КПД − более 80%. КПД закрытых двухканальных рабочих колес имеют те же значения, что и у многоканального рабочего колеса. КПД открытых двухканальных рабочих колес, например, рабочего колеса типа N одного из шведских производителей, почти на 5% ниже, чем того же колеса в закрытом исполнении. Очевидно, что потери в щели между корпусом и лопастями рабочего колеса и в специально устроенном пазу для отклонения волокон значительно выше, чем потери в диске и щелевом уплотнении закрытого колеса.




Столь же важным, как КПД в оптимальной точке характеристики, является КПД в диапазоне неполных нагрузок. Здесь можно обнаружить существенное влияние геометрической формы рабочего колеса. Для детального анализа на рис. 5 показан характер изменения КПД в зависимости от подачи для рабочих колес различной геометрической формы. Зависимости η = f(Q) построены в относительных единицах по отношению к подаче Q/Qопт = 1. Свободновихревое рабочее колесо имеет в широком диапазоне подачи насоса постоянный, но небольшой КПД. Низкий КПД обусловлен гидродинамическими условиями и может быть улучшен лишь в узких пределах. Многоканальные рабочие колеса благодаря большему числу лопастей наиболее эффективно преобразуют энергию во всем диапазоне нагрузок, но они пригодны для перекачивания только предварительно очищенных сточных вод. Рабочие колеса закрытого типа отличаются более плоской кривой КПД и, таким образом, более высоким КПД в режиме неполных нагрузок, чем рабочие колеса открытого типа. Например, в диапазоне неполных нагрузок КПД закрытого одноканального рабочего колеса может отличаться от КПД открытого одноканального рабочего колеса на 10%, хотя в оптимальной точке характеристики их КПД одинаков. Это положение справедливо также и для двухканальных рабочих колес. Поэтому при оценке энергетических параметров насосов необходимо учитывать не только КПД в оптимальной точке характеристики, но и КПД в режимах неполных нагрузок, в которых канализационные насосы работают очень часто.

В течение эксплуатационного периода происходит изменение КПД и зависимости P = f(Q). Это обстоятельство следует обязательно учитывать при проектировании насосной станции для перекачки сточных вод. На рис. 6 показано влияние износа щелевого зазора на рабочие характеристики открытого однолопастного рабочего колеса. Хорошо видно, что снижение КПД в оптимальной точке характеристики может достигать до 10%. По мере абразивного износа изменяется и напорная характеристика насоса. Для приведенной на рис. 6 характеристики сети примерно на 8% уменьшается подача. Однако этот эффект не заметен при повседневной работе , так как в общем случае расходомеры не устанавливаются, а количество потребляемой энергии остается примерно постоянным из-за уменьшения подачи. На рис. 7 показано, как непрерывно снижается величина КПД в зависимости от увеличения зазора. Хорошо видно, что у рабочего колеса открытого типа, например типа N, КПД снижается значительно быстрее, чем у колеса закрытого типа.


Важным критерием оценки вероятности закупоривания рабочих колес насосов является свободный проход, опре- деляемый диаметром шара, который может пройти через рабочее колесо. На рис. 8 показано сравнение максимального свободного прохода различных рабочих колес. Свободный проход зависит от типоразмера и числа лопастей рабочего колеса. Требуемые потребителями для перекачки неочищенных сточных вод свободные проходы минимум 80 мм или даже 100 мм могут быть обеспечены только определенными типами рабочих колес. Как свободновихревые, так и однолопастные рабочие колеса имеют относительно большие свободные проходы и в течение многих лет оправдывают себя при перекачивании неочищенных сточных вод с крупными твердыми частицами. Для открытых однолопастных рабочих колес характерны несколько меньшие свободные проходы, но все же при всех типоразмерах не менее 75 мм. При DN 150 свободный проход составляет даже 100 мм. У закрытых двухканальных рабочих колес свободный проход находится на том же уровне, что и у открытых однолопастных. Однако открытые двухканальные и многоканальные рабочие колеса имеют более узкий, зависимый от конструкции, свободный проход и поэтому не могут обеспечить работу без закупорки в присутствии крупных твердых примесей. У двухканальных рабочих колес свободный проход ограничен. Это относится также и к рабочему колесу типа N. Только при специальном оформлении в виде так называемого колеса горшкового типа закрытое двухканальное рабочее колесо может иметь свободный проход более 75 мм при DN 80 и DN 100 и более 100 мм начиная с DN 150. Для обеспечения надежного перекачивания неочищенных сточных вод и надежной работы насосов свободный проход должен быть не менее 100 мм. Такое требование содержится в новых нормативах по выбору канализационных насосов ATV-134 немецкого объединения специалистов по очистке сточных вод.


При выборе канализационных насосов все более важным критерием становятся издержки за срок их службы. При работе в периодическом режиме, характерном для канализационных насосных станций, стоимость энергии составляет около 50% затрат за срок службы. При непрерывном режиме, в котором часто работает водоприемная станция очистного сооружения, расходы на энергию превышают 80% общих затрат. Это положение справедливо, естественно, только для безотказной работы канализационного насоса и без его закупорок. При закупорках насоса (рис. 9) прямые расходы, связанные с устранением неполадки, и косвенные затраты из-за простоя насоса являются решающим фактором издержек. Эти затраты могут превысить стоимость насоса. По этой причине владельцы канализационных насосных станций придают первоочередное значение эксплуатационной надежности и лишь во вторую очередь − коэффициенту полезного действия. Выбор рабочего колеса насоса всегда означает компромисс между вероятностью закупорки насоса, КПД в рабочей зоне и характеристикой износа. Выбирать форму рабочего колеса можно только с учетом специфического состава сточных вод. Поэтому не может быть универсального рабочего колеса, как это пропагандируется одним из крупных шведских производителей насосов.

Некоторые рекомендации по выбору оптимальной формы рабочего колеса приводятся в табл. 2. При высоком содержании газовых включений свободновихревое рабочее колесо, как и прежде, является наилучшим решением. При высоком содержании волокнистых веществ получены хорошие результаты с открытыми однолопастным и двухканальными рабочими колесами. При среднем содержании волокон, характерном для коммунальных сточных вод, предпочтение отдается закрытым однолопастным и двухканальным рабочим колесам вследствие их высокой эксплуатационной надежности. При экстремальной загрязненности промышленными отходами или бытовым мусором применяется свободновихревое рабочее колесо, несмотря на неудовлетворительную эффективность использования энергии. Это в особой мере относится к небольшим типоразмерам − DN 80 и DN 100.


Это было подтверждено многочисленными экспериментами с различными видами и концентрациями волокнистых материалов на испытательном стенде фирмы KSB, моделирующем условия перекачивания сточных вод. Очевидный вывод, который можно сделать - для экономичной транспортировки сточных вод необходимо выбирать геометрические формы рабочих колес канализационных насосов строго в соответствии с составом и характеристиками перекачиваемой среды.

По заявке клиента, компания «Электрогидромаш» поставит запасные части к насосам собственного производства: Х, АХ, АХП, АНС 60, АНС 130, С569М, С245 . А так же к насосам различных типов: Д, 1Д, СДВ, СМ, СД, ЦНС, ВК, К, КМ, НКУ, КС, НК, СМ, ЦВК, СЭ, Ш, НМШ, ВВН, и многим другим насосам. В частности, поставляются такие узлы, как ротор в сборе, рабочее колесо, уплотняющее кольцо, вал, втулка защитная, направляющий аппарат, корпус насоса.

Что дает установка новых запчастей:

Запасные части насосов — это не только продление срока службы агрегата , но и существенная экономия денег . Можно привести такой пример: у насоса Д 320/50 с электродвигателем мощностью 75 кВт за 5 лет работы на водопроводе КПД снизился на 10%. Это привело к незначительному спаду подачи (с 320 до 304 м3/ч) и напора (с 50 до 47,5 м). Однако соответствующие потери электроэнергии оказались весьма существенными: за год они составили 65 700 кВт/ч, т. е. 45 990 руб. , что значительно превосходит стоимость нового колеса (4600 руб. )

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама