THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Группы

Предельные состояния сооружений по степени возможных последствий подразделяют следующим образом:

В соответствии с методом расчёта по предельным состояниям вместо ранее применявшегося единого коэффициента запаса прочности (по методу допускаемых напряжений) используется несколько, учитывающих особенности работы сооружения , независимых коэффициентов, каждый из которых имеет определённый вклад в обеспечение надёжности конструкции и гарантии от возникновения предельного состояния .

Метод предельных состояний, разработанный в СССР и основанный на исследованиях под руководством профессора Н. С. Стрелецкого , введён строительными нормами и правилами в 1955 году и в Российской Федерации является основным методом при расчёте строительных конструкций .

Этот метод характеризуется полнотой оценки несущей способности и надёжности конструкций благодаря учёту :

  • вероятностных свойств действующих на конструкции нагрузок и сопротивлений этим нагрузкам;
  • особенностей работы отдельных видов конструкций;
  • пластических свойств материалов.

Расчёт конструкции по методу предельных состояний должен гарантировать ненаступление предельного состояния .

Примечания

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Предельное состояние" в других словарях:

    предельное состояние - Состояние конструкции, при которой оно утрачивает способность сохранять одну из своих противопожарных функций. [ГОСТ Р 53310 2009] [ГОСТ Р 53310 2013] предельное состояние Состояние объекта, при котором его дальнейшая эксплуатация недопустима или … Справочник технического переводчика

    В строительной механике состояние конструкции (сооружения), при котором она перестает удовлетворять эксплуатационным требованиям. Метод предельного состояния является в Российской Федерации основным при расчете строительных конструкций … Большой Энциклопедический словарь

    Предельное состояние - 2.5. Предельное состояние Limiting state Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно Источник: ГОСТ 27.002 89:… …

    - (в строительной механике), состояние конструкции (сооружения), при котором она перестаёт удовлетворять эксплуатационным требованиям. Метод предельного состояния является в России основным при расчёте строительных конструкций. * * * ПРЕДЕЛЬНОЕ… … Энциклопедический словарь

    Предельное состояние АЛ - 2.2. Предельное состояние АЛ состояние автолестницы, при котором ее дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление ее работоспособного состояния невозможно или нецелесообразно. Источник … Словарь-справочник терминов нормативно-технической документации

    предельное состояние - ribinė būsena statusas T sritis Standartizacija ir metrologija apibrėžtis Objekto būsena, kai tolesnis jo naudojimas neleistinas arba netikslingas. atitikmenys: angl. limiting state vok. Grenzzustand, m rus. предельное состояние, n pranc. état… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    предельное состояние - ribinė būsena statusas T sritis fizika atitikmenys: angl. limiting state vok. Grenzzustand, m rus. предельное состояние, n pranc. état limite, m … Fizikos terminų žodynas

    Состояние изделия, при к ром его дальнейшее применение по назначению недопустимо или нецелесообразно либо восстановление его исправного или работоспособного состояния невозможно или нецелесообразно … Большой энциклопедический политехнический словарь

    Предельное состояние - – состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна либо восстановление его работоспособного состояния невозможно или нецелесообразно. ГОСТ 27.002 89 … Коммерческая электроэнергетика. Словарь-справочник

    предельное состояние - состояние объекта, при котором его дальнейшая эксплуатация должна быть прекращена из за неустранимого нарушения требований безопасности, или неустранимого снижения уровня работоспособности, или недопустимого снижения эффективности эксплуатации … Политехнический терминологический толковый словарь

Книги

  • Мудрость правителя на пути долголетия. Теория и практика достижения бессмертия (книга+футляр) , Виногродский Б.Б.. В традиционном Китае достижение здорового долголетия - высшая ценность человеческой жизни. При этом здоровье понимается как уравновешенное внутреннее состояние человека, которое проявляется в…

Физический смысл предельных состояний.

И работе по предельным состояниям

Тема 4.2.1. Понятие о предельных состояниях строительных конструкций

1. Предельными называются состояния здания, соору­жения, основания или конструкций, при ко­торых они:

А) перестают удовлетворять эксплуатацион­ным требованиям

Б) а также требованиям, заданным при их воз­ведении.

2. Группы предельных состояний конструкций (зданий):
а) первая группа - по потере несущей способности или непригод­ности к эксплуатации. Состояния этой группы считаются предельными, если в К насту­пило опасное напряженно-деформированное состояние или она разрушилась;

Б) вторая группа - по непригодности к нормальной эксплуата­ции. Нормальная - это эксплуатация здания (К) в соответствии с нормами: технологичес­кими или бытовыми условиями.

Пример. Конструкция не потеряла несущей способности, т.е. удовлетворяет требованиям первой группы п.с., но ее деформации (прогибы или трещины) нарушают технологический процесс или нормальные ус­ловия нахождения людей в помещении.

Примеры предельных состояний 1 й и 2 й группы.

1. К предельным состояниям первой группы относятся:
а) общая потеря устойчивости формы (рис. 2.1, а, б – с.26);
б) потеря устойчивости положения (рис. 2.1, в, г);
в) хрупкое, вязкое или иного характера разрушение (рис. 2.1, д);
г) разрушение под совместным воздействием силовых факторов и внешней среды и др.

2. К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию К (З) или снижающие их долговечность от недопу­стимых перемещений (прогибов, осадок, углов поворота), коле­баний и трещин.

Пример 1. Прочная надёжная подкрановая балка прогнулась больше норматива. Мостовой кран с грузом «выезжает из ямы» от прогиба балки, что создает лишние нагрузки на узлы и ухудшает условия нормальной эксплуатации.

Пример 2. При прогибе дере­вянного оштукатуренного потолка > чем на 1/300 длины пролета отпадает штукатурка. Прочность балки не исчерпывается, но нарушаются быто­вые условия и возникает опасность здоровью людей.

Пример 3. Чрезмерное раскрытие трещин, которые допустимы в ЖБ и КК, но ограничиваются нормами.

1. Цель метода расчета СК по предельным со­стояниям: не допустить ни одно­го из предельных состояний в К (З) при их эксплуатации в течение срока служ­бы и при возведении.

2. Суть расчёта по предельным состояниям - величины усилий, напряжений, деформаций, раскрытия трещин или других воздействий не должны превышали предельных значений по нормам проектирования.



А) т.е. предельное состояние не наступит, если перечисленные факторы не превышают значений, установленных нормами.

Б) сложность расчета в опре­делении напряжений, деформаций и т.д., в конструкциях от нагрузок. Сравнить их с предель­ными не сложно.

по предельным состояниям 1 й группы

1. Расчет по предельным состояниям первой группы - расчет по несущей способности (непригодности к эксплуа­тации).

2. Цель расчета - предот­вратить наступление любого предельного состояния первой груп­пы, т.е. обеспечить несущую способность как К, и всего З в целом.

3. Несущая способность конструкции обеспечена , если

N ≤ Ф (2.1)

N - расчетные, т.е. наибольшие возможные усилия, могущие возникнуть в сечении элемента (для сжа­тых и растянутых элементов - это продольная сила, для изгиба­емых - изгибающий момент и т.д.).

Ф - наименьшая возможная несущая способность сечения эле­мента, подвергающегося сжатию, растяжению или изгибу, зависит от прочности материала К, геомет­рии (формы и размеров) сечения и выражена:

Ф ={R; А } (2.2)

R - расчетное сопротивление материала - од­на из основных прочностных характеристик материала

А - геометрический фактор (площадь поперечного сечения - при растяжении и сжатии, момент сопротивления - при изгибе и т.д.).

4. Для некоторых конструкций несущая способность обеспечена, если

σ ≤ R (2.3)

где σ - нормальные напряжения в сечении К (иногда касательные, главные и др.).

Структура и содержание основных расчетных формул при расчете

по предельным состояниям 2 й группы (п.с )

1. Цель расчета - не допустить предельных со­стояний второй группы, т.е. обеспечить нормальную эксплуатацию СК или здания. П.С. второй группы не насту­пят при условии:

f - деформация конструкции (перемещение, угол поворота сечения и т. д.).

Прим. Деформации: при изгибе – прогиб СК, стержни - укорочение или удлинение, основания - величина осадки

2. К п.с. 2 группы - об­разование чрезмерных трещин. Они допус­тимы для ЖБК и КК. Ширина их раскры­тия, как и прогибы, ограничивается нормами.

Предельным называется такое состояние, при котором сооружение (конструкция) перестает удовлетворять эксплуатационным требованиям, т.е. теряет способность сопротивляться внешним воздействиям и нагрузкам, получает недопустимые перемещения или ширину раскрытия трещин и т.д.

По степени опасности нормы устанавливают две группы предельных состояний: первая группа - по несущей способности;

вторая группа - по к нормальной эксплуатации.

К предельным состояниям первой группы относят хрупкое, вязкое, усталостное или иное разрушение, а также потерю устойчивости формы, потерю устойчивости положения, разрушение от совместного действия силовых факторов и неблагоприятных условий окружающей среды.

Предельные состояния второй группы характеризуются образованием и чрезмерным раскрытием трещин, чрезмерными прогибами, углами поворота, амплитудами колебаний.

Расчет по первой группе предельных состояний является основным и обязательным во всех случаях.

Расчет по второй группе предельных состояний производится для тех конструкций, которые теряют свои эксплуатационные качества вследствие наступления вышеперечисленных причин.

Задачей расчета по предельным состояниям является обеспечение требуемой гарантии того, что за время эксплуатации сооружения или конструкции не наступит ни одно из предельных состояний.

Переход конструкции в то или иное предельное состояние зависит от многих факторов, наиболее важными из которых являются:

1. внешние нагрузки и воздействия;

2. механические характеристики бетона и арматуры;

3. условия работы материалов и конструкции.

Каждый фактор характеризуется изменчивостью в процессе эксплуатации, причем изменчивость каждого фактора в отдельности не зависит от остальных и является процессом случайным. Так нагрузки и воздействия могут отличаться от заданной вероятности превышения средних значений, а механические характеристики материалов - от заданной вероятности снижения средних значений.

В расчетах по предельным состояниям учитывают статистическую изменчивость нагрузок и прочностных характеристик материалов, а также различные неблагоприятные или благоприятные условия работы.

2.2.3. Нагрузки

Нагрузки делятся на постоянные и временные. Временные, в зависимости от продолжительности действия, подразделяются на длительные, кратковременные и особые.

К постоянным нагрузкам относятся вес несущих и ограждающих конструкций, вес и давление грунта, усилие предварительного обжатия.

К длительным временным нагрузкам относят вес стационарного оборудования на перекрытиях; давление газов, жидкостей, сыпучих тел в емкостях; нагрузки в складских помещениях; длительные температурные технологические воздействия, часть полезной нагрузки жилых и общественных зданий, от 30 до 60% веса снега, часть нагрузок мостовых кранов и т.д.

Кратковременными нагрузками или временными нагрузками непродолжительного действия считаются: вес людей, материалов в зонах обслуживания и ремонта; часть нагрузки на перекрытиях жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже; нагрузки от подвесных и мостовых кранов; снеговые и ветровые нагрузки.

Особые нагрузки возникают при сейсмических, взрывных и аварийных воздействиях.

Различают две группы нагрузок - нормативные и расчетные.

Нормативными называют такие нагрузки, которые не могут быть превышены при нормальной эксплуатации.

Нормативные нагрузки устанавливаются на основе опыта проектирования, строительства и эксплуатации зданий и сооружений.

Принимаются они по нормам с учетом заданной вероятности превышения средних значений. Величины постоянных нагрузок определяют по проектным значениям геометрических параметров и средним величинам плотности материалов.

Нормативные временные нагрузки устанавливаются по наибольшим значениям, например, ветровые и снеговые нагрузки -по средним из ежегодных значений для неблагоприятного периода их действия.

Расчетные нагрузки.

Изменчивость нагрузок, в результате которой возникает вероятность превышения их величин, а в отдельных случаях и снижения, по сравнению с нормативными, оценивается введением коэффициента надежности .

Расчетные нагрузки определяются умножением нормативной нагрузки на коэффициент надежности, т.е.

(2.38)

где q

При расчете конструкций по первой группе предельных состояний принимается, как правило, больше единицы и только в том случае, когда уменьшение нагрузки ухудшает условия работы конструкции, принимают < 1 .

Расчет конструкции по второй группе предельных состояний производится на расчетные нагрузки с коэффициентом =1, учитывая меньшую опасность их наступления.

Сочетание нагрузок

На сооружение действует одновременно несколько нагрузок. Одновременное достижение их максимальных значений маловероятно. Поэтому расчет производится на различные неблагоприятные сочетания их, с введением коэффициента сочетаний.

Различают два вида сочетаний: основные сочетания, состоящие из постоянных, длительных и кратковременных нагрузок; особые сочетания, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок.

Если в основное сочетание входит только одна кратковременная нагрузка, коэффициент сочетаний принимается равным единице, при учете двух и более кратковременных нагрузок последние умножаются на 0,9.

При проектировании следует учитывать степень ответственности и капитальности зданий и сооружений.

Учёт осуществляется введением коэффициента надёжности по назначению, который принимается в зависимости от класса сооружений.Для сооружений 1 класса (объекты уникальные и монументальные)
, дляобъектов II класса (многоэтажные жилые, общественные, производственные)
. Для сооружений III класса

Тема 3. Расчет металлических конструкций по методу предельных

состояний

Понятие о предельных состояниях конструкций; расчетные ситуации. Расчет конструкций по первой группе предельных состояний. Расчет конструкций по второй группе состояний. Нормативные и расчетные сопротивления

Все строительные конструкции, в том числе и металлические, рассчитываются в настоящее время по методу предельных состояний. В основе метода лежит поня- тие о предельных состояниях конструкций. Под предельными подразумеваются такие состояния, при которых конструкции перестают удовлетворять предъявляе- мым к ним в процессе эксплуатации или при возведении требованиям, заданным в соответствии с назначением и ответственностью сооружений.

В металлических конструкциях различают две группы предельных состояний:

Предельные состояния первой группы характеризуются потерей несущей способности и полной непригодностью конструкций к эксплуатации. К предельным состояниям первой группы относятся:

Разрушение любого характера (вязкое, хрупкое, усталостное);

Общая потеря устойчивости формы;

Потеря устойчивости положения;

Переход конструкции в изменяемую систему;

Качественное изменение конфигурации;

Развитие пластических деформаций, чрезмерных сдвигов в соединениях

Выход за границы первой группы предельных состояний означает полную утрату работоспособности конструкции.

Предельные состояния второй группы характеризуются непригодностью к нормальной эксплуатации, вследствие появления недопустимых перемещений (прогибов, углов поворота, колебаний и т. д.), а также недопустимого раскрытия трещин (для железобетонных конструкций).

В соответствии с действующими нормами при расчете строительных конструкций реализуются две расчетные ситуации: аварийная и установившаяся.

Расчет по первой группе предельных состояний направлен на предотв- ращение аварийной расчетной ситуации, которая может возникнуть не более одного раза в течение всего срока эксплуатации конструкции.

Расчет по второй группе предельных состояний характеризует установив- шуюся расчетную ситуацию, соответствующую нормативным условиям эксплуатации.

Расчет конструкции, направленной на предотвращение предельных состояний первой группы (аварийной расчетной ситуации) выражается неравенством:

N ≤ Ф (3.1)

где N – усилие в рассматриваемом элементе (продольная сила, изгибающий момент, поперечная сила)

Ф – несущая способность элемента

При аварийной расчетной ситуации усилие N зависит от предельной расчетной нагрузки F m , определяемой по формуле:

F m = F 0 ∙ g fm

где F 0

g fm - коэффициент надежности по предельному значению нагрузки, учитывающий возможное отклонение нагрузки в неблагоприятную сторону. Характеристическое значение нагрузки F 0 и коэффициент g fm определяют по значениям ДБН .

При подсчете нагрузок, как правило, учитывают коэффициент надежности по назначению сооружению g n , зависящий от степени ответственности сооружения

F m = F 0 ∙ g fm ∙ g n

Значение коэффициента g n приведены в табл. 3.1

Таблица 3.1 Коэффициенты надежности по назначению сооружения g n

Класс объекта Степень ответствен­ности Примеры объектов g n
I Особо важное народно хо­зяйственное и (или) соци­альное значение Главные корпуса ТЭС, центральные узлы доменных печей, дымовые тру­бы высотой более 200 м, телебашни, крытые спортивные сооружения, те­атры, кинотеатры, детские сады, больницы, музеи.
II Важное народно-хозяйственное и (или) социальное значение Объекты, ни вошедшие в классы I и III 0,95
III Ограниченное народнохо­зяйственное и социальное значение Склады без процессов сортировки и упаковки для храпения сельско­хозяйственных продуктов, удобре­ний, химикатов, торфа и др., теп­лицы, одноэтажные жилые здания, опоры связи и освещения, ограды, временные здания и сооружения и т.д. 0,9

Правую часть неравенства (3.1) можно представить в виде

Ф = SR y g c (3.2)

где R y - расчетное сопротивление стали, установленное по пределу текучести, S - геометрическая характеристика сечения (при растяжении или сжатии – площадь сечения А , при изгибе – момент сопротивления W и т. д.),

g c - коэффициент условия работы конструкции, значения которого

установлены СНиП и приведены в табл. А 1 приложения А.

Подставляя в формулу (3.1) значение (3.2), получим

N ≤ SR y g c

Для растянутых элементов при S = A

N ≤ AR y g c

Разделив левую и правую части неравенства на А, получим условие прочности растянутого элемента

Для изгибаемых элементов при S=W

M ≤ WR y g c

Условие прочности изгибаемого элемента

Формула для проверки устойчивости сжатого элемента

При расчете конструкций, работающих при повторных нагружениях (например, при расчете подкрановых балок) для определения усилий используют циклическую расчетную нагрузку, значение которой определяют по формуле

F c = F 0 g fc g n

где F 0 - характеристическое значение крановой нагрузки;

g fc - коэффициент надежности по циклическому расчетному значению крановой нагрузки

Расчет стальных конструкций, направленный на предотвращение предельных состояний второй группы выражается неравенством

d ≤ [d ], (3.3)

где d - деформации или перемещения конструкций, возникающие от эксплуатационного расчетного значения нагрузок; для определения можно использовать методы строительной механики (например, метод Мора, начальных параметров);

[d ] - предельные деформации или перемещения, установленные нормами .

Эксплуатационное расчетное значение нагрузки характеризует условия нормальной эксплуатации и определяется по формуле

F l = F 0 g f е g n

где F 0 - характеристическое значение нагрузки,

g f е - коэффициент надежности по эксплуатационной расчетной нагрузке.

Для изгибаемых элементов (балок, ферм) нормируется относительный прогиб f/l , где f - абсолютный прогиб, l - пролет балки.

Формула для проверки жесткости балки на двух опорах имеет вид

(3.4)

где - предельный относительный прогиб;

для главных балок = 1/400,

для балок настила = 1/250,

q e - эксплуатационное расчетное значение нагрузки, определяемое по формуле

q e = q 0 g fe g n

Характеристическое значение нагрузки q e и коэффициент надежности по эксплуатационной расчетной нагрузке g fe принимаются по указаниям норм .

Ко второй группе предельных состояний относится также расчет на трещиностойкость в железобетонных конструкциях.

Для некоторых материалов, например, пластмасс характерна ползучесть – нестабильность деформаций во времени. В этом случае проверку жесткости конструкций следует выполнять с учетом ползучести. В таких расчетах используют квазипостоянную расчетную нагрузку, значение которой определяют по формуле:

F p = F 0 g fp g n

где F 0 - характеристическое значение квазипостоянной нагрузки;

g fp - коэффициент надежности для квазипостоянной расчетной нагрузки.

В металлических конструкциях различают два вида расчетного сопротивления R :

- R y - расчетное сопротивление, установленное по пределу текучести и используемое в расчетах, предполагающих упругую работу материала;

- R u - расчетное сопротивление, установленное по пределу прочности и используемое в расчетах конструкций, где допустимы значительные пластичные деформации.

Расчетное сопротивление R y и R u определяются по формулам:

R y = R yn /g m и R u = R un /g m

в которых R yn и R un - нормативные сопротивления, соответственно равные

R yn = s m

R un = s в

Где s m - предел текучести,

s в - предел прочности (временного сопротивления) материала;

g m - коэффициент надежности по материалу, учитывающий изменчивость свойств материала и выборочный характер испытаний образцов по определе- нию s m и s в , а также масштабный фактор – механические характеристики определяются на малых образцах при кратковременном одноосном растяже- нии, в то время как металл работает длительное время в большеразмерных конструкциях.

Значение нормативных сопротивлений R yn = s m и R un = s в , а также значения коэффициента g m устанавливают статистически. Нормативные сопротивления имеют статистическую обеспеченность не менее 0,95, т.е. в 95 случаях из 100 s m и s в будут не менее значений, указанных в сертификате. Коэффициент надежности по материалу g m установлен на основании анализа кривых распределения результатов испытаний стали. Значения этого коэффициента в зависимости от ГОСТ или ТУ на сталь дает табл. 2 СНиП . Значения этого коэффициента изменяются от 1,025 до 1,15.

Нормативные R yn и R un и расчетные R y и R u сопротивления для разных марок стали в зависимости от вида проката (лист или фасон) м его толщины представлены в табл. 51 СНиП . В расчетах также используют расчетное сопротивление на сдвиг (срез) R s =0,58R y , на смятие R p = R u и др.

Нормативные и расчетные сопротивления для некоторых наиболее применяемых марок сталей приведены в табл. 3.2 .

Таблица 3.2. Нормативные и расчетные сопротивления стали по

ГОСТ 27772-88.

Сталь Таблица проката Нормативные сопротивления, МПа, проката Расчетные сопротивления, МПа, проката
листового фасонного листового фасонного
R yn R un R yn R un R yn R un R yn R un
С235 2-20 2-40
С245 2-20 2-30 - - - -
С255 4-10 10-20 20-40
С275 2-10 10-20
С285 4-10 10-20
С345 2-10 20-20 20-40
С345 4-10
С375 2-10 10-20 20-40

Таким образом, в методе предельных состояний все исходные величины, случайные по своей природе, представляются в нормах некоторыми нормативными значениями, а влияние их изменчивости на конструкцию учитывается соответствующими коэффициентами надежности. Каждый из введенных коэффициентов учитывает изменчивость лишь одной исходной величины (нагрузки, условий работы, свойств материалов, степени ответственности сооружения). Эти коэффициенты часто называют частными, а сам метод расчета по предельным состояниям за рубежом называют методом частных коэффициентов.

Литература: , с. 50-52; с. 55-58.

Тесты для самоконтроля

I. Потеря устойчивости относится к предельным состояниям:

1. I группы;

2. II группы;

3. III группы.

II. Коэффициент γ m учитывает:

1. условия работы конструкции;

3. изменчивость нагрузок.

III. Расчетное сопротивление Ry определяют по формуле:

1. Ry = Ryn / γ m ;

2. Ry = Run / γ n ;

3. Ry = Run / γ c.

IV. Непригодность конструкций к эксплуатации характеризует предель-

ное состояние:

1. I группы;

2. II группы;

3. III группы.

V. Коэффициент γ n учитывает:

1. Степень ответственности сооружения;

2. изменчивость свойств материала;

3. изменчивость нагрузок.

VI. Расчетное сопротивление Ry устанавливают:

1. по пределу упругости;

2. по пределу текучести;

3. по пределу прочности.

VII. Коэффициент γ fm применяют для определения расчетной нагрузки:

1. предельной;

2. эксплуатационной

3. циклической.

VIII. Расчет на устойчивость выполняют с учетом расчетной нагрузки:

1. предельной;

2. эксплуатационной

3.циклической.

IХ. Хрупкое разрушение относится к предельным состояниям:

1. I группы;

2. II группы;

3. III группы.

Х. Для одноэтажных жилых зданий коэффициент γ n принимают

1. γ n = 1;

2. γ n = 0,95;

3. γ n = 0,9;

ХI. Для особо ответственных зданий коэффициент γ n принимают

1.γ n = 1;

2.γ n = 0,95;

3.γ n = 0,9;

ХII. Ко второй группе предельных состояний относится расчет:

1. на прочность;

2. на жесткость;

3. на устойчивость.

3.2 Классификация нагрузок. Нагрузка от веса конструкции и грунта. Нагрузки на перекрытия и покрытия зданий. Снеговая нагрузка. Ветровая нагрузка. Сочетания нагрузок.

По характеру воздействия нагрузки делятся на: механические и немехани- ческой природы.

Механические нагрузки (силы, приложенные к конструкции, или вынужденные деформации) учитываются в расчетах непосредственно.

Воздействия немеханической природы , например, влияние агрессивной среды, как правило, в расчете учитывается косвенно.

В зависимости от причин возникновения нагрузки и воздействия подразделяют-

ся на основные и эпизодические.

В зависимости от изменчивости во времени нагрузки и воздействия подразде-

ляются на постоянные и переменные (временные). Переменные (временные)

нагрузки делятся на: длительные; кратковременные; эпизодические.

Основой для назначения нагрузок являются их характеристические значения.

Расчетные значения нагрузок определяются умножением характеристических

значений на коэффициент надежности по нагрузке, зависящий от вида нагруже-

ния. В зависимости от характера нагрузок и целей расчета используют четыре вида расчетных значений - предельное; эксплуатационное; циклическое; квазипостоянное.

Их значения определяют соответственно по формулам:

F m = F 0 · γ f m · γ n , (3.5)

F e = F 0 · γ f e · γ n , (3.6)

F c = F 0 · γ f c · γ n , (3.7)

F p = F 0 · γ f p · γ n , (3.8)

где F 0 – характеристическое значение нагрузки;

γ f m , γ f e , γ f c , γ f p - коэффициенты надежности по нагрузке;

γ n – коэффициент надежности по назначению сооружения, учитывающий

степень его ответственности (см. табл. 3.1).

Вес несущих и ограждающих конструкций здания;

Вес и давление грунтов (насыпей, засыпок);

Усилие от предварительного напряжения в конструкциях.

Вес временных перегородок, подливок, подбетонок под оборудование;

Вес стационарного оборудования и его заполнения жидкостями, сыпучими

Давление газов, жидкостей и сыпучих тел в ёмкостях и трубопроводах;

Нагрузки на перекрытия от складируемых материалов в складах, архивах и т.д.;

Температурные технологические воздействие от оборудования;

Вес слоя воды в водонаполненных покрытиях;

Вес отложения производственной пыли;

Воздействия, обусловленные деформациями основания без изменения структу-

ры грунта;

Воздействии, обусловленные изменением влажности, агрессивности среды,

усадкой и ползучестью материалов.

Снеговые нагрузки;

Ветровые нагрузки;

Гололедные нагрузки;

Нагрузки от подвижного подъемно-транспортного оборудования, включая мос-

товые и подвесные краны;

Температурные климатические воздействия;

Нагрузки от людей, животных, оборудования на перекрытия жилых, обществен-

ных и сельскохозяйственных зданий;

Вес людей, ремонтных материалов в зоне обслуживания оборудования;

Нагрузки от оборудования, возникающие в пускоостановочном, переходном и

испытательных режимах.

Сейсмические воздействия;

Взрывные воздействия;

Нагрузки аварийные, вызванные нарушениями технологического процесса, по-

ломкой оборудования;

Нагрузки, обусловленные деформациями основания с коренным изменением

структуры грунта (при замачивании просадочных грунтов) или оседанием его

в районах горных выработок и в карстовых районах.

Характеристические и расчетные значения эпизодических нагрузок определяются

специальными нормативными документами.

Характеристическое значение веса конструкций заводского изготовления следует определять на основании каталогов, стандартов, рабочих чертежей или

паспортных данных заводов-изготовителей. Для других конструкций (монолит-

ный железобетон, кирпичная кладка, грунт) значение веса определяют по проект-

ным размерам и плотности материалов. Для железобетона плотность принимается

ρ = 2500 кг/м 3 , для стали ρ = 7850 кг/м 3 , для кирпичной кладки ρ = 1800 кг/м 3 .

Постоянная нагрузка может иметь три расчетных значения:

Предельное, определяемое по формуле:

F m = F 0 · γ f m · γ n ,

Эксплуатационное, определяемое по формуле:

F e = F 0 · γ f e · γ n ,

Квазипостоянное, определяемое по формуле:

F p = F 0 · γ f p · γ n ,

В приведенных формулах γ n – коэффициент надежности по назначению

сооружения (см. табл. (3.1). Значения коэффициента надежности по предельному

значению нагрузки γ f m принимается по табл.3.3. Значение коэффициент надеж- ности по эксплуатационному значению нагрузки γ f e принимается равным 1,

т.е γ f e = 1 ; равным 1 принимается также значение коэффициента γ f p = 1, исполь-

зуемого для определения квазипостоянного расчетного значения нагрузки, приме-

няемого в расчетах на ползучесть.

Таблица 3.3 Значение коэффициента γ f m

Значения в скобках следует использовать при проверке устойчивости конструкции на опрокидывание и в иных случаях, когда уменьшение веса конструкций и грунтов может ухудшить условия работы конструкции.

В таблице 3.4 приведены характеристические значения равномерно распределен-

ных нагрузок на перекрытия жилых и общественных зданий.


Продолжение таблицы 3.4.

Предельное эксплуатационное значение нагрузок на перекрытия определяют

по формулам:

q m = q 0 · γ fm · γ n ,

q e = q 0 · γ fe · γ n .

Коэффициенты надежности для предельной нагрузки γ fm = 1,3 при q 0 < 2кН/м 2 ; при q 0 ≥ 2кН/м 2 γ fm = 1,2 . Коэффициент надежности для эксплуатационной нагрузки γ fe = 1.

является переменной, для которой установлены три расчетных значения: предельное, эксплуатационное и квазипостоянное. Для расчета без учета реологических свойств материала используют предельное и эксплуатационное расчетные значения снеговой нагрузки.

Предельное расчетное значение снеговой нагрузки на горизонтальную проек-

цию покрытия определяется по формуле:

S m = S 0 · C · γ fm , (3.9)

где S 0 – характеристическое значение снеговой нагрузки, равное весу снегового покрова на 1м 2 поверхности земли. Значения S 0 определяются в зависимости от снегового района по карте районирования или по приложению Е . На терри- тории Украины выделено шесть снеговых районов; максимальное значение характеристической нагрузки для каждого из снеговых районов приведены в таблице 3.5. Запорожье расположено в III снеговом районе.

Таблица 3.5.- Максимальные значения характеристической снеговой нагрузки

Снеговой район I II III IV V VI
S 0 , Па

Более точные значения характеристической снеговой нагрузки для некоторых

городов Украины приведены в таблице А.3 приложения А.

Коэффициент с в формуле (3.9) определяется по формуле:

С = μ · Се · Саlt ,

где: Се – коэффициент учитывающий режим эксплуатации кровли;

Саlt

μ - коэффициент перехода от веса снегового покрова на поверхности земли

к снеговой нагрузке на покрытие, зависящий от формы кровли.

Для зданий с односкатными и двухскатными покрытиями (рис. 3.1) значения

коэффициента μ принимают равным:

μ = 1 при α ≤ 25 0

μ = 0 при α > 60 0 ,

где α – угол наклона кровли. Варианты 2 и 3 следует учитывать для зданий с

двухскатными профилями (профиль б) , при этом вариант 2 – 20 0 ≤ α ≤ 30 0 ,

а вариант 3 – 10 0 ≤ α ≤ 30 0 только при наличии ходовых мостиков или аэрацион-

ных устройств по коньку покрытия.

Значение коэффициента μ для зданий

с покрытиями других очертаний мож-

но найти в приложении Ж .

Коэффициент Се в формуле (3.9), учи-

тывающий влияние режима эксплуата-

ции на накопление снега на кровле

(очистку, таяние и др.), устанавливается

заданием на проектирование. Для неутеп-

ленных покрытий цехов с повышенным

тепловыделением при уклонах кровли свыше 3% и обеспечении надлежащего

отвода талой воды следует принимать

Се =0,8. При отсутствии данных о режи-

ме эксплуатации кровли допускается

принимать Се =1 . Коэффициент Саlt – учитывает географическую высоту Н (км) размещения строительного объекта над уровнем моря. При Н < 0,5км, Саlt = 1 , при Н ≥ 0,5км значение Саlt можно определить по формуле:

Саlt = 1,4Н + 0,3

Коэффициент γ fm по предельному расчетному значению снеговой нагрузки в

формуле (3.9) определяется в зависимости от заданного среднего периода повто-

ряемости Т по таблице 3.6

Таблица 3.6. Коэффициент γ fm по предельному расчетному значению

снеговой нагрузки

Промежуточные значения γ fm

Для объектов массового строительства допускается период повторяемости аварийной ситуации Т Т е f (табл. А.3, прилож. А).

Эксплуатационное расчетное значение снеговой нагрузки определяется по формуле:

S e = S o · C · γ fe , (3.10)

где S o и C – то же что и в формуле (3.9);

γ fe – коэффициент надежности по эксплуатационному значению снеговой

нагрузки, определяемый по таблице 3.7 в зависимости от доли времени

η на протяжении которой могут нарушаться условия второго предель-

ного состояния; промежуточное значение γ fe следует определять линей-

ной интерполяцией.

Таблица 3.7. Коэффициент γ fe по эксплуатационному значению снеговой нагрузки

η 0,002 0,005 0,01 0,02 0,03 0,04 0,05 0,1
γ fe 0,88 0,74 0,62 0,49 0,4 0,34 0,28 0,1

Значение η принимается по нормам проектирования конструкций или устанав-

ливается заданием на проектирование в зависимости от их назначения, ответствен-

ности и следствий выхода за предельное состояние. Для объектов массового строи-

тельства допускается принимать η = 0,02 (2% времени от срока службы сооруже-

является переменной, для которой установлены два расчет-

ных значения: предельное и эксплуатационное.

Предельное расчетное значение ветровой нагрузки определяется по формуле:

W m = W 0 · C γ fm , (3.11)

где С – коэффициент определяемый по формуле (3.12);

γ fm – коэффициент надежности по предельному значению ветровой нагрузки;

W 0 - характеристическое значение ветровой нагрузки, равное средней (стати-

ческой) составляющей давления ветра на высоте 10м над поверхностью

земли. Значение W 0 определяется в зависимости от ветрового района по

карте районирования или по приложению Е .

На территории Украины выделено пять ветровых районов; максимальные характе-

ристические значения нагрузки для каждого из ветровых районов приведены в таб-

лице 3.8. Запорожье расположено в III ветровом районе.

Таблица 3.8. Максимальные характеристические значения ветровой нагрузки

Ветровой район I II III IV V
W 0 ,

Более точные значения характеристической ветровой нагрузки для некоторых городов Украины приведены в таблице А.2 прилож. А.

Коэффициент С в формуле (3.11) определяется по формуле:

С = Саер · Сh · Calt ·Crel · Cdir · Cd (3.12)

где Саер – аэродинамический коэффициент; Сh - коэффициент, учитывающий высоту сооружения; Calt – коэффициент географической высоты; Crel – коэффи -циент рельефа; Cdir – коэффициент направления; Cd – коэффициент динамич- ности.

Современные нормы предусматривают несколько аэродинамических коэффициентов:

Внешнего воздействия Се ;

Трения С f ;

Внутреннего воздействия C i ;

Лобового сопротивления С х ;

Поперечной силы С у .

Значения аэродинамических коэффициентов определяются по приложению И

в зависимости от формы сооружения или конструктивного элемента. При расчете рам каркасов зданий обычно используют аэродинамический коэффициент внешнего воздействия Се . На рисунке 3.2 представлены сооружения простейшей формы, схемы ветрового давления на поверхности и аэродинамические коэффициенты внешнего воздействия к ним.

а – отдельно стоящие плоские сплошные конструкции; б – здания с двускатными покрытиями.

Рис.3.2. Схемы ветровых нагрузок

Для зданий с двускатными покрытиями (рис.3.2,б) аэродинамический коэффициент

активного давления Се = + 0,8; значения коэффициентов Се1 и Се2 в зависимости от

размеров здания приведены в табл. 3.9 , коэффициент Се3 – в табл.3.10 .

Таблица 3.9. Значения коэффициентов Се1 и Се2

Коэффициент α, град. Значения Се 1 ,Се2 при h / l , равном
0,5 ≥ 2
Се1 - 0,6 - 0,7 - 0,8
+ 0,2 - 0,4 - 0,7 - 0,8
+ 0,4 +0,3 - 0,2 - 0,4
+ 0,8 +0,8 +0,8 +0,8
Се2 ≤ 60 - 0,4 - 0,4 - 0,5 - 0,8

Таблица 3.10. Значения коэффициентов Се3

b/ l Значения Се3 при h / l , равном
≤ 0,5 ≥ 2
≤ 1 - 0,4 - 0,5 - 0,6
≥ 2 - 0,5 - 0,6 - 0,6

Знак «плюс» у коэффициентов соответствует направлению давления ветра на поверхность, знак «минус» - от поверхности. Промежуточные значения коэффи-циентов следует определять линейной интерполяцией. Максимальное значение коэффициента для откоса Се3 = 0,6.

Коэффициент высоты сооружения Сh учитывает увеличение ветровой нагрузки по высоте здания и зависит от типа окружающей местности и определяется по таблице 3.11.

Таблица 3.11. Значения коэффициентов Сh

Z (м) Сh для типа местности
I II III IV
≤ 5 0,9 0,7 0,40 0,20
1,20 0,90 0,60 0,40
1,35 1,15 0,85 0,65
1,60 1,45 1,15 1,00
1,75 1,65 1,35 1,10
1,90 1,75 1,50 1,20
1,95 1,85 1,60 1,25
2,15 2,10 1,85 1,35
2,3 2,20 2,05 1,45

Типы местности, окружающей сооружение, определяются для каждого расчет-

ного направления ветра в отдельности:

I – открытые поверхности морей, озер, а также равнины без препятствий, подвер-

гающиеся действию ветра на участке длиной не менее 3 км;

II – сельская местность с оградами (заборами), небольшими сооружениями, дома-

ми и деревьями;

III – пригородные и промышленные зоны, протяженные лесные массивы;

IV – городские территории, на которых по крайней мере 15% поверхности заняты

зданиями, имеющими среднюю высоту более 15 м.

Сооружение считается расположенным на местности данного типа для опреде-

ленного расчетного направления ветра, если в рассматриваемом направлении такая

местность имеется на расстоянии 30Z при полной высоте сооружения Z < 60м или

2 км при Z > 60м (Z – высота здания).

Коэффициент географической высоты Calt учитывает высоту Н (км) размещения

строительного объекта над уровнем моря и определяется по формуле:

Calt = 2Н, при Н > 0,5 км,

Calt = 1 , при Н ≤ 0,5 км.

Коэффициент рельефа Crel учитывает микрорельеф местности вблизи площад-

ки, на которой расположен строительный объект, и принимается равным единице

за исключением случаев, когда объект строительства расположен на холме или на

Коэффициент направления Cdir учитывает неравномерность ветровой нагрузки

по направлению ветра и, как правило, принимается равным единице. Cdir ≠ 1 при-

нимается при специальном обосновании только для открытой равнинной местнос-

Коэффициент динамичности Cd учитывает, влияние пульсационной составляю-

щей ветровой нагрузки и пространственную корреляцию ветрового давления на

сооружение. Для сооружений, не требующих расчета динамики ветра Cd = 1.

Коэффициент надежности по предельному расчетному значению ветровой наг-

рузки γ fm определяется в зависимости от заданного среднего периода повторяе-

мости Т по таблице 3.12.

Таблица 3.12. Коэффициент надежности по предельному расчетному значению ветровой нагрузки γ fm

Промежуточные значения γ fm следует определять линейной интерполяцией.

Для объектов массового строительства допускается средний период повторяемос - ти Т принимать равным установленному сроку эксплуатации конструкции Т ef

(по табл.А.3. прилож.А).

Эксплуатационное расчетное значение ветровой нагрузки определяется по формуле:

We = Wo · C γfe , (3.13)

где Wo и C – то же, что и в формуле (3.12);

γfe – коэффициент надежности по эксплуатационному расчетному значению

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама