THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Расчитайте приблизительную стоимость строительства энергоэффективного дома, используя строительный калькулятор .

Что же такое энергоэффективный дом?

 Это дом, в котором:

  • обеспечиваются минимальные потери тепла через ограждающие конструкции за счет увеличения толщины теплоизоляции стен и применения эффективных современных утеплителей
  • применяются окна и наружные двери с высоким сопротивлением теплопередачи
  • обеспечивается высокая герметичность здания и контролируется весь воздухообмен с помощью приточно-вытяжных вентиляционных систем с рекуперацией тепла, что снижает потери тепла при вентиляции помещения
  • Выполнение вышеуказанных условий обеспечивает в доме низкое и сверхнизкое энергопотребление. В Германии хорошими показателями энергоэффективного дома считаются, когда на 1 м² отапливаемой площади в год расходуется не более 1,5…3 литра условного топлива, т.е. не более 15...30 кВт ч/м² в год.

    По теории немецких ученых, в любой местности есть свои специфические (для данной местности) природные возобновляемые источники, которые в случае низкого энергопотребления могут полностью заменить традиционные источники энергоресурсов и обеспечить комфортное проживание в доме.

    Низкое энергопотребление дома дает возможность использовать возобновляемые источники энергии окружающей среды. При этом источники энергии могут быть различных видов: геотермальная энергия Земли, солнечная энергия, энергия ветра, энергия воды. В приморской зоне, например, ветрогенераторы и приливные электростанции . В горной местности - ветрогенераторы и геотермальные системы . В равнинной местности - геотермальные, солнечные установки и т.д. Такое использование окружающей среды является экологически безопасным, обеспечивает сохранность окружающей среды, а самое главное, дает независимость от постоянно растущих цен на энергоресурсы.

    Несмотря на высокую стоимость оборудования, необходимого для получения тепла из возобновляемых источников энергии, оно становится конкурентоспособным традиционному оборудованию, работающему на газе, электричестве, дровах и угле, так как текущие эксплуатационные затраты минимальны и практически не зависят от роста цен. К тому же за последнее время стоимость этого оборудования, которое в недалеком прошлом была фантастической, значительно снизилась и с каждым годом продолжает снижаться.

    Строительство индивидуальных малоэтажных энергоэффективных жилых домов в России

    В настоящее время, индивидуальные малоэтажные энергоэффективные дома для большинства населения России являются несбыточной мечтой. Единичные экземпляры, построенные в последнее время, по стоимости (более 100 тыс. руб./м²) значительно превышают стоимость обычных домов, рассчитанных по действующим в России нормам.

    Специалистам ООО «ИнтерСтрой» была поставлена задача, разработать проект и построить опытный образец энергоэффективного индивидуального малоэтажного дома, по стоимости, не превышающей среднюю стоимость обычного загородного дома (ориентировочно не более 60 тыс. руб./м²).

    В дальнейшем, по итогам мониторинга эксплуатационных свойств строящегося здания, планируется продолжить оптимизацию затрат и снизить стоимость строительства еще на 10-15%. Такое условие необходимо для реализации массового строительства домов такого класса в местности с ограниченными энергоресурсами (отсутствие электричества, газа).

    Предварительный выбор основных архитектурных и технических решений

    До принятия основного варианта «пилотного проекта» индивидуального малоэтажного жилого дома, специалистами ООО «Институт пассивного дома», были проанализированы несколько вариантов планировочных и конструктивных решений, а также сделаны предварительные расчеты для подбора видов утеплителей и их толщин.

    С целью снижения стоимости дома, была принята прямоугольная форма дома в плане, позволившая минимизировать объем наружных стен на единицу площади здания.

    Особое внимание было уделено выбору конструкции наружных стен. В результате сравнения различных материалов (кирпич, пеноблоки, деревянный каркас и т.д.), в качестве несущих и ограждающих конструкций, было решено использовать монолитные железобетонные конструкции. Бетонные стены имеют плотную структуру, что позволяет более качественно выполнить требуемую герметизацию внутреннего объема, необходимого для контроля и управления воздухообменом с целью минимизации тепловых потерь и максимального сохранения тепла (до 80%). Также обеспечивается высокая несущая способность при минимальных толщинах, что существенно снижает объем конструкций и уменьшает стоимость и сроки выполнения работ.

    В качестве утеплителя, среди огромного многообразия материалов представленных на сегодняшний день (жесткие, мягкие, минеральные, синтетические, «задувные» и т.п.), был выбран плитный минераловатный утеплитель нового поколения, производимый компанией «SAINT-GOBAIN» . Кроме того, была достигнута договоренность о совместной разработке с компанией «SAINT-GOBAIN» узлов крепления утеплителя (толщиной 400 мм и более) к бетонной поверхности наружных стен.

    Внешний вид здания

    Основные проектные решения здания

    Архитектурно-планировочные решения

    Архитекторами была принята модульная концепция планировки здания, при использовании которой, можно реализовать примыкание модулей в различных направлениях.

    Модуль представляет квадрат с внутренними размерами 9,6×9,6 метров общей площадью около 90 м². Квадратная форма была принята для снижения материалоемкости наружных дорогостоящих стен из расчета на 1 м² площади.

    Модульная планировка дает возможность строить дома площадью: 90 м², 135 м², 180 м², 225 м², 270 м² и т.д.

    Фундамент

    Фундамент выполнен в виде монолитной железобетонной плиты толщиной 300 мм, cтены подвального этажа выполнены из монолитного железобетона толщиной 150 мм.

    Конструкции стен первого, второго и третьего этажей

    Наружные стены – несущие, выполнены из монолитного железобетона толщиной 150 мм с последующим утеплением минераловатными плитами, с наружной отделкой вентилируемыми фасадами и частично штукатурными фасадами. Внутренние стены, кроме двух простенков лестницы и первого простенка коммуникационной шахты, могут выполняться из любых стеновых материалов по желанию заказчика (кирпич, пазогребневые блоки, ГКЛ и т.п.).

    Перекрытия

    Междуэтажные перекрытия - безбалочные монолитные железобетонные, толщиной 160 мм, с опорой на наружные стены, простенки лестницы и коммуникационной шахты. Монолитное перекрытие с большим пролетом дает возможность архитекторам, при оформлении интерьера, выполнить любую индивидуальную планировку и удовлетворить самые строгие запросы заказчика.

    Кровля

    Кровля принята частично не эксплуатируемой с односкатным радиусным закруглением с внутренним водостоком и частично эксплуатируемой с плоским скатом. Утепление радиусной кровли принято из минераловатных плит «ISOVER» толщиной 600 мм. Утепление плоской кровли – 450 мм экструзивного пенополистирола. Различные решения приняты для того, чтобы показать возможность использования в данном проекте разнообразных видов кровель (как плоских, так и сложных с криволинейным контуром, а также различных видов одно, двух, четырех скатных).

    Тепловая оболочка здания

    Утепление здания начинается с основания под фундаментную плиту утеплителем из экструзивного пенополистирола толщиной 300 мм. Далее осуществляется утепление стен подвала утеплителем XPS толщиной 350 мм. Утепление наружных стен выполнено минераловатными плитами толщиной 400 мм. Для утепления кровли, парапетов и карнизов используются утеплители с малым объемным весом, как плотной структуры, так и неплотной (экструдированный пенополистирол, «ISOVER» и т.п.). Выбор различных материалов теплоизоляции связан с тем, что утеплению подлежат конструкции, работающие в разных условиях (фундамент, стены подвала, наружные стены, кровля).

    Для крепления полужесткого утеплителя на стенах разработаны 2 варианта подсистем вентилируемого и «мокрого» фасада. Одна подсистема состоит из двутавровых балок, выполненных из ОSB, установленных вертикально, с заполнением пространства между фермами утеплителем типа «ISOVER». Вторая - из металлических кронштейнов и деревянных брусков, выполненных в виде каркаса, с заполнением утеплителем типа «ISOVER». Совместно с компанией «Saint-Gobain» продолжаются разработки и других видов унифицированных подсистем с целью их удешевления и улучшения характеристик (для возможности крепления утеплителя толщиной 400 мм, 500 мм и более).

    Наружное остекление и двери

    В связи с тем, что тепловой расчет экспериментального дома производился по стандартам Германии, архитекторам была поставлена сложная задача. При проектировании остекления дома строго учитывалась ориентация дома по сторонам света. Минимальное остекление принято на северной стороне, максимальное - на южной. В жаркое летнее время на фасаде дома предусмотрена система автоматической солнцезащиты. С целью снижения теплопотерь предусмотрен один вход. Применяемые окна и двери должны удовлетворять следующим требованиям проекта: Rо = 1,19 – 1,20 (м² С)/Вт.

    Наружные декоративные элементы фасадов

    Имеются различные технические решения, которые позволяют снять проблемы промерзания через эти элементы. Однако они нередко дороги и использование их в строительстве приведет к излишнему удорожанию. Поэтому в данном проекте элементами отделки фасада являются различные сочетания вентилируемого фасада и наружной фасадной штукатурки. Имеющиеся в настоящее время на строительном рынке разновидности этих материалов позволяют удовлетворить вкус самого требовательного заказчика.

    Умелое сочетание различных видов отделки вентилируемых фасадов, использование различных цветов наружной окраски участков стен, а также применение разных конструкций кровли позволяет архитекторам предложить заказчикам большое разнообразие не похожих друг на друга домов.

    Внутренняя планировка

    Все помещения с максимальным пребыванием людей сосредоточены с южной стороны, где возможно максимальное остекление. Помещения технического и бытового назначения располагаются в основном с северной стороны, где наружное остекление отсутствует или оно минимальное. От помещений с двойным светом решено было отказаться, ввиду значительного ухудшения теплотехнических характеристик здания.

    Инженерное оборудование дома

    Водоснабжение

    На территории участка предусмотрена скважина. Скважина обеспечивает все потребности дома. Автоматика управления насосом и все оборудование для подачи воды находится в колодце, оборудованном над оголовком скважины.

    Внутри здания в подвале предусмотрен узел ввода, оборудованный необходимой запорной арматурой, фильтрами тонкой очистки воды и счетчиками расхода воды.

    Подогрев горячей воды осуществляется совместно с помощью теплового насоса и солнечных коллекторов, а в случае отказа одной из систем – подогрев обеспечивается с помощью резервного источника (в данном проекте – газовый котел).

    В случае поломки насоса, в доме предусмотрен аварийный запас питьевой воды в объеме 1000 литров.

    Водостоки и ливневая канализация

    Кровля состоит из плоской части с площадью около 45 м² и односкатной с переменным уклоном - 75 м². На плоской кровле сток воды осуществляется по уклонам в сторону воронок, расположенных в углах здания. На наклонной кровле сток воды также осуществляется по уклонам к водосточным воронкам, находящимся в самых нижних точках по углам здания.

    Вся отведенная дождевая и талая вода направляется в дренажные колодцы пристенного дренажа дома.

    Возможно применение на плоской кровле внутренних водостоков с накопительной емкостью дождевой воды в подвале или заглубленной емкости в земле (для использования на полив).

    Канализация

    Проектом предусмотрены два вида канализации:

    1. Для подвала предусмотрена напорная канализация с использованием установки СОЛОЛИФТ (для санузла, душевых кабин и трапа сбора воды с пола моечного помещения и сауны) и дренажного насоса (для откачки воды из приямка технического помещения в процессе эксплуатации).

    2. Для остальной части дома предусмотрена самотечная канализация с одним вертикальным стояком в технологической шахте, горизонтальным участком под потолком подвала и выпуском из здания в подвале на высоте 1 м от чистого пола.

    Самотечная канализация выводит бытовые стоки в септик. Септик марки «Тверь», предусмотренный в данном проекте, расположен в 3-х метрах от северной стены дома.

    Отопление

    Изначально в данном проекте ставилась задача использования нетрадиционных, экологически чистых, возобновляемых энергетических источников тепла. Было принято использовать в качестве энергетического источника тепловые насосы (использующие геотермальное тепло Земли) и солнечные коллекторы, использующие энергию Солнца. Вырабатываемое этими установками тепло, по расчетам организации ООО «Компания ЭНСО ИНТЕРНЭШНЛ», достаточно для подогрева воды и обеспечения дома теплом на протяжении всего года. В связи с тем, что теплопотери энергоэффективного дома значительно ниже, чем в обычном доме, то требуемая мощность тепловых установок не превышает 10 кВт.

    Обеспечение получения этой мощности возможно с двух скважин общей глубиной около 200 м (50 Вт с каждого погонного метра скважины на 200 метров = 10 кВт).

    В качестве резервной энергетической установки принят газовый котел (возможны и другие виды энергетических установок: котлы, работающие на дровах, угле, дизельном топливе, электричестве и т.д.).

    Проект отопления с помощью совместной работы теплового насоса и солнечного коллектора выполнен организацией ООО «Компания ЭНСО ИНТЕРНЭШНЛ».

    В данном проекте для отопления и ГВС предложена модульная система TYRRO c геотермальным грунтовым (горизонтальным или вертикальным) теплообменником и функцией «freecooling» в летнее время.

    Солнечные коллекторы предлагается ставить на специальных кронштейнах на плоской кровле с южной или юго-западной стороны здания. Их площадь определяется в процессе проектирования, исходя из архитектурных и инженерных соображений. Солнечное тепло в летнее время будет направлено на подогрев грунта в месте установки грунтового теплообменника, а также на подогрев воды в бассейне и воды для полива растений. В зимнее время часть низкотемпературного тепла будет направлено на подогрев теплового насоса.

    Также предусматривается подогрев воздуха через систему вентиляции в зимнее время, и охлаждение в летнее время. Во время, когда тепловой насос будет нагревать воду, с другой стороны насоса в испарительном контуре (коллектор, находящийся в земле) будет охлаждаться грунт, повышая эффективность охлаждения в режиме «freecooling» .

    Вентиляция

    В настоящем проекте дома предусмотрена принудительная вентиляция с применением приточно-вытяжных вентиляционных установок с рекуперацией тепла. Применение принудительной вентиляции имеет как достоинства, так и недостатки.

    Недостатками этой системы, по сравнению с естественной вентиляцией, являются:

  • постоянная работа вентиляционного оборудования и шум от его работы
  • большие единовременные затраты на оборудование и его последующее сервисное техническое обслуживание
  • необходимость в замене фильтров очистки воздуха
  • Достоинством является - возможность качественной очистки подаваемого воздуха, что является важным показателем для здоровья людей, особенно страдающих аллергическими и легочными заболеваниями. Чистота окружающего воздуха, как в городе, так и в сельской местности, оставляет желать лучшего. В городе - копоть, отработанные газы машин и т.п. В сельской местности - микрочастицы от цветения растений, вызывающих аллергические заболевания и т.п.

    Контроль и управление воздухообменом дает возможность обеспечить в любом помещении, в зависимости от ситуации, поступления достаточного количества воздуха, соответственно и кислорода, что качественно улучшает работу организма человека, особенно его мозга.

    Возможность рекуперации тепла от уходящего в атмосферу воздуха дает главную экономию энергопотребления. Современные установки рекуперации позволяют возвращать до 90% тепла, выбрасываемого из дома вместе с воздухом в системах традиционной естественной вентиляции. Это позволяет значительно снизить эксплуатационные затраты по теплу и дает значительную экономию бюджета.

    Для обеспечения в доме вентиляции в случае отключения электричества, предусмотрена система естественной вентиляции. Для обеспечения ее работы и возможности циркуляции воздуха предусмотрены окна с режимом микропроветривания.

    Для отвода отработанных газов от газового котла, являющегося резервным источником тепла, предусмотрен отдельный дымоход с выходом на крышу. Забор воздуха для работы котла осуществляется с улицы, а не из помещений.

    Электрика

    Согласно техническим условиям, на участок, где строится дом, выделено 10 кВт электроэнергии. Подключение дома осуществляется от распределительного электрического щита, установленного на столбе освещения.

    В доме имеется свой распределительный щит. Предусмотрен стабилизатор напряжения. Горизонтальная разводка кабельных линий осуществляется на потолке (в кабель-каналах, лотках, в трубках ПНД). Вертикальная разводка питающих этажных кабельных линий - в технологической шахте в кабель-канале, а также скрытая по стенам, в штрабе, с последующей штукатуркой и окраской. Для подключения оборудования принята отдельная питающая линия.

    Предусмотрено резервное электрообеспечение от небольшого дизельного генератора, который обеспечивает работу инженерного оборудования в случае аварийного отключения. Подключение и работа генератора происходит в автоматическом режиме и рассчитана на 8-10 часов бесперебойной работы. За это время все инженерные системы должны быть переведены в специальный режим или отключены (в зависимости от назначения того или другого оборудования).

    Заземление

    В доме предусмотрено заземление, принятое строительными нормами и правилами.

    Молниезащита

    В доме, для защиты в летнее время от молнии, предусмотрена молниезащита, которая соответствует действующим в России требованиям безопасности.

    Эксплуатационные затраты и преимущества
    энергоэффективного дома

    Учитывая непрекращающийся в России рост цен на коммунальные услуги и энергоресурсы, дома такого класса дают возможность их владельцам значительно легче пережить повышающиеся затраты на услуги ЖКХ.

    Представленный ниже рост цен на электричество и газ, не говоря о росте стоимости горячей воды, технического обслуживания и эксплуатации жилья показывает, что он в разы превышает статистический рост зарплаты среднего работающего россиянина. В случае, сохранения имеющейся динамики роста цен на услуги ЖКХ и роста средней зарплаты, в течении нескольких лет, оплата коммунальных услуг составит существенный, а может быть и основной объем расходов в бюджете рядовых российских граждан.

    Динамика фактического роста цен на газ и электричество
    с 2004 по 2014г.г. и, в случае сохранения имеющейся динамики
    роста цен, на период с 2014 по 2024г.г.

    По предварительным расчетам, дополнительные общестроительные затраты на обеспечение энергоэффективности здания и затраты на применение современного дорогостоящего инженерного оборудования, использующего альтернативные источники энергии, при действующих тарифах, оправдываются уже за 5-6 лет эксплуатации. С учетом прогнозируемого роста тарифов, в ближайшее время, срок окупаемости может сократиться до 2 лет.

    Оценка затрат на отопление обычного дома с энергопотреблением порядка 150 кВт ч/м² год и энергоэффективного дома 25-30 кВт ч/м² год позволяет сделать вывод, что затраты на различные виды энергоресурсов (газ, электричество и т.д.) при эксплуатации энергоэффективного дома снижаются в 5-6 раз, и в случае продолжения роста тарифов, о чем свидетельствуют последние 10 лет, экономия только на отоплении поможет сохранить ваш бюджет.

    Далее приведены расходы на отопление обычного дома с энергопотреблением 150 кВт ч/м² год и энергоэффективного дома с энергопотреблением 28 кВт ч/м² год с одинаковыми площадями по 300 м², и использованием различных типов энергоустановок (электрический котел, тепловой насос, газовый котел).

    Расходы при эксплуатации элэктрического котла, руб./год

    Расходы при эксплуатации газового котла, руб./год

    Год Обычный дом Энергоэффективный дом
    2024 116 545 21 755
    2019 45 556 8 504
    2014 27 303 5 097
    2009 10 062 1 878
    2004 5 966 1 114

    В заключении

    В процессе проектирования энергоэффективного дома, инженеры и архитекторы компании ООО «ИнтерСтрой», изучали опыт работы, консультировались у специалистов, как отечественных, так и зарубежных организаций, работающих в этом направлении. Многие из достижений и рекомендаций, которые достойны внимания, были реализованы при разработке индивидуального малоэтажного жилого дома серии «ИС-33э» .

    Строительство энергоэффективных домов в России находится на начальной стадии своего развития. В процессе работы над данным проектом стало очевидным, что используемые нами современные достижения, технологические и технические решения - это только малая часть того, что используется в настоящий момент в зарубежных странах.

    Нами запланировано много работы по изучению и внедрению отечественных и зарубежных разработок, которые наиболее оптимально подходят к климатическим условиям России.

    Компанией ООО «ИнтерСтрой» запланировано несколько направлений по строительству энергоэффективных домов. Ниже представлены некоторые из них:

    .

    1. Продолжение поиска наиболее оптимальных архитектурных и технических решений с применением в конструкциях здания различных типов материалов, как традиционных, так и новых, более эффективных материалов для достижения снижения энергопотребления (ниже 28 кВт ч/м² год).

    2. Вести дальнейшую работу по подбору инженерного оборудования и систем, работающих на возобновляемых источниках энергии, а также совмещать их с традиционным оборудованием, работающем на газе, электричестве, дизельном топливе, угле, дровах и т.д.

    3. Завершить в текущем году строительство опытного образца индивидуального малоэтажного энергоэффективного дома (28 кВт ч/м² год), по стоимости, не превышающей среднюю стоимость (по московскому региону) обычного дома.

    4. Произвести на данном объекте (после окончания строительства - следующие 2-3 года) комплексный мониторинг показателей работы инженерных систем и конструкций здания, что позволит:

  • повысить эффективность методик расчета энергоэффективности, применяемых к климатическим условиям России
  • проанализировать используемые строительные конструкции, строительные материалы, инженерное оборудование, технологические и технические решения для оценки возможности их дальнейшего применения
  • получить фактические расходы и эксплуатационные затраты по дому, с соответствующей расшифровкой по каждому направлению (отопление, ГВС, вентиляция, охлаждение, электроэнергия для инженерного оборудования, бытовых приборов и т.д.)
  • подготовить проектные, технические и технологические решения, для возможного снижения энергопотребления при строительстве последующих объектов, обеспечив конкурентоспособную стоимость, по сравнению со стоимостью обычного дом
  • Данные мониторинга необходимы для оптимизации и снижения стоимости строительства и последующих затрат. В свою очередь, снижение стоимости энергоэффективного дома, до стоимости, сопоставимой со стоимостью обычного дома, позволит ему занять достойное место на рынке жилья.

    Очевидно, что для любого Клиента, которому не безразлично его финансовое благополучие в будущем, выбор строительства энергоэффективного дома будет правильным решением .

    Энергоэффективный дом – это здание, в котором очень малое потребление энергии сочетается с комфортным микроклиматом.

    Экономия энергии в таких домах достигает 90%.

    Годовая потребность в отоплении энергоэффективного дома может составлять менее 15 кВт*ч на квадратный метр.
    Например, на сегодняшний день в самой распространенной конструкции частного дома (ж/б фундамент, система «теплый пол» без утепления, стены 1,5 кирпича с цементной штукатуркой, обычными металлопластиковыми окнами, утеплением кровли 150мм и без приточно-вытяжной вентиляции с рекуперацией тепла) потребление энергии на отопление составляет 110-130 кВт*ч на 1 м2 в год.

    В странах Евросоюза принята такая классификация домов:

    1. Дома низкого энергопотребления
      Используют как минимум на 50 % энергии меньше, чем стандартные здания, построенные в соответствии с действующими нормами энергопотребления.
    2. Дома ультранизкого энергопотребления
      Расходуют на 70-90 % энергии меньше, чем обычные здания. Примеры домов ультранизкого энергопотребления с четко обозначенными требованиями – это немецкий Passive House, французский Effinergie, швейцарский Minergie.
      Пионером в строительстве таких домов стал Passive House (пассивный дом), который был разработан в Германии в г.Дармштадт в 90-х годах. Принято считать здание «пассивным», если оно соответствует требованиям, разработанным немецким институтом пассивных зданий. «Пассивный» дом – это дом с отличной теплоизоляцией, минимальным потреблением электроэнергии и тепловой энергии. В нем поддерживается комфортный микроклимат в основном за счет человеческого тепла, энергии солнца и бытовых электроприборов, таких как чайник, плита и т.д. Технологии «пассивного» дома (здания с ультранизким потреблением энергии, без традиционной системы отопления), эффективны и уже опробованы в суровом скандинавском климате. Такие дома практически не имеют тепловых потерь.
    3. Дома, генерирующие энергию
      Это здания, которые производят электричество для собственных нужд. В некоторых случаях излишки энергии летом могут быть проданы энергетической компании и куплены обратно в зимнее время. Хорошая теплоизоляция, инновационный дизайн и использование возобновляемых источников энергии (солнечные батареи, грунтовые тепловые насосы) делают эти дома авангардом современного домостроения.
    4. Дома с нулевыми выбросами CO2
      Термин, чаще всего используемый в Великобритании. Такой дом не выделяет CO2. Это означает, что дом сам обеспечивает себя энергией из возобновляемых источников, включая энергию, расходуемую на отопление/охлаждение помещений, горячее водоснабжение, вентиляцию, освещение, приготовление пищи и электрические приборы. В Великобритании все новые дома с 2016 года строятся в соответствии с этим стандартом. В России принята следующая классификация:


    *В соответствие со СНиП 23-02-2003 "Тепловая защита зданий" нормативы для
    Ростова-на-Дону (м2° С/Вт) Rстен=2,63 Rпокр=3,96 Rокон=0,84

    КАК «НАУЧИТЬ» ДОМ БЫТЬ ЭКОНОМНЫМ И КОМФОРТНЫМ?

    1. Правильное ориентирование дома относительно сторон света.


    Одним из наиболее важных факторов, влияющих на потребление домом энергетических ресурсов, является его расположение относительно сторон света. Большая часть окон дома должна быть направлена на юг. При этом отклонение до 30° от азимута на юг незначительно уменьшает использование энергии солнца. Если дом расположить по-другому, то стены и крышу здания следует утеплить более эффективно, чтобы компенсировать недостаток тепла, попадающего в помещение с лучами солнечного света.

    Как происходит нагрев дома от солнца? Порядка 90% световой энергии проникает через стёкла окон, нагревая помещение. Современные стеклопакеты изготавливают со специальными покрытиями и заполнением инертным газом. Покрытия отражают длинноволновые инфракрасные лучи из помещения обратно внутрь помещений, уменьшая их потерю через окна.

    Из-за больших окон летом в доме может стать слишком жарко. Эта проблема решается применением еще одного специального покрытия стекол, а также использованием автоматических систем затемнения, свесов крыш, балконов. Их располагают так, чтобы позволить проходить прямым солнечным лучам через окна только при низком положении солнца в зимнее время. Летом окна на солнечной стороне дома затеняют деревья. Зимой же солнечный свет легко проникает в дом между голыми ветвями.

    2. Проектирование компактной конфигурации строений.

    Чем больше наружная поверхность здания при одинаковом объёме его помещений, тем выше потери тепла. Поэтому при строительстве, реконструкции или расширении дома, следует по возможности избегать всевозможных ниш, уступов, выступов на стенах. Имеет смысл возводить необогреваемые пристройки на северной стороне дома. Например, помещения для хранения садового инвентаря и велосипедов, технические помещения, защищающие отапливаемую часть дома от ветра и холода. Дом компактной конструкции не только потребляет меньше энергии, но и требует меньших затрат на строительство.

    3. Наружные стены, конструкции и свойства применяемых строительных материалов.

    Значительная часть тепла уходит из дома через его наружную оболочку. Чем выше перепад между температурами в помещениях и вне дома, тем больше потери тепла.


    Степень теплоизоляции дома определяется коэффициентами сопротивления теплопередаче его ограждающих конструкций (пол, стены, окна, кровля). Чем он выше, тем качество утепления лучше.

    На рисунке выше представлены конструкции стен коэффициент сопротивления передачи которых составляет 2,1- 2,2 м2ºС/Вт, что удовлетворяет региональным требованиям зданий находящихся в географической широте г.Краснодара.

    В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», для г. Ростов-на-Дону, сопротивление теплопередаче одноэтажного дома должно быть не менее 2,62 м2ºС/Вт.

    4. Толщина наружных стен и жилая площадь дома.

    От толщины наружных стен непосредственно зависит величина будущей жилой площади в доме. Если стены сделать толщиной, например, не 32 см, а 38,5 см, жилая площадь дома значительно уменьшится. Так, в доме площадью 10x11 м в условиях стен указанной толщины его жилая площадь потеряет 2,73 м! На каждом этаже. А это значит, что каждый квадратный метр жилья обойдётся дороже! При толщине же стен в 49 см жилая площадь каждого этажа уменьшится почти на 8 м2.

    5. Шумозащита дома.

    Звукоизоляция стен и конструкций дома напрямую зависит от плотности и структуры материала, из которого они изготовлены. При проектировании дома, очень важно уделять внимание изоляции от ударных и звуковых шумов.

    Сплошные (без окон и дверей) стены, например из фибропенобетона толщиной 250мм, в полной мере отвечают требованиям комфорта. Звукоизоляция же стены с окнами, занимающими более 25% площади, будет уже не столь эффективной: в этом случае значительная порция шума будет проникать через окна. Именно здесь, прежде всего, потребуются специальные меры по шумоизоляции.

    6. Индивидуальное восприятие комфорта и климат в помещении.

    Понятие «комфорт в доме» у многих имеет неодинаковый смысл. Одни считают, что самый комфортный - это дом из обожжённого глиняного кирпича, другие предпочитают силикатный кирпич, третьи питают пристрастие к деревянной каркасной конструкции. Однако климат в доме зависит не только от абсорбционной и теплоаккумулирующей способности стен, принципа работы системы отопления, системы вентилирования и деятельности его обитателей. Комфортный микроклимат – это сбалансированное сочетание всех этих элементов в конструкции дома.

    7. Теплопотери и мостики холода.

    При утеплении дома особое внимание необходимо местам потерь тепла, или так называемым «мостам холода». В этих местах тепло уходит наружу более интенсивно, чем в других. Примером могут служить балконы, исполненные вместе с перекрытием в виде одной сплошной плиты, оконные откосы или стыки между наружными стенами и подвальным перекрытием. Чтобы уменьшить потери тепла и избежать возможных повреждений конструкций (например, образования на них плесени из-за отпотевания), необходимо учесть это ещё в стадии проектирования и строительства дома.
    Уплотнению стыков в местах монтажа окон, дверей, кровли и креплению корпусов ролльставен следует обратить особое внимание.


    В условиях любой стропильной конструкции, в т.ч. деревянной, над утеплителем необходимо настелить гидроизоляционную паропроницаемую пленку, а снизу под утеплитель пароизоляционную плёнку и уложить бесшовную теплоизоляцию. Особого внимания требует заделка примыканий к внутренним стенам. На этих двух фото один и тот же дом: первая фотография сделана фотоаппаратом, вторая - тепловизором.
    Этот прибор зафиксировал огромные теплопотери через окна и наружные стены (отмечены желтым и красным цветами).

    8. Теплоизоляция крыши.

    Если раньше считалось, что для теплоизоляции крыши вполне достаточно утеплителя (минерально-волокнистых матов или пенополиуретановых плит) толщиной 10 см, то теперь в отношении утепления крыши действуют значительно более жёсткие нормы. Для крыш энергоэффективных («тёплых») домов сопротивление теплопередаче должно быть не менее не менее 6 м2ºС/Вт, т.е. толщина теплоизоляции из материала с коэффициентом теплопроводности (при равновесной влажности) 0,04 Вт/м2К должна быть не менее 24 см.

    В условиях более жёстких норм потребления энергоресурсов, важную роль в их экономии играют системы отопления домов, отвечающие новым требованиям. Существенной экономии энергии можно достичь, например, за счёт применения автоматически регулируемых малоинерционных систем, быстро реагирующих на изменение температуры в помещениях.

    Так при прогревании помещений солнечными лучами, проходящими сквозь окна, соответствующие датчики могут подавать на дозирующие клапаны сигнал, на уменьшение подачи теплоносителя в приборы отопления данной комнаты. Соответственно котел будет работать меньшее количество времени и расход газа сократится. В этом случае добрую услугу при отоплении дома Вам могут оказать пластинчатые отопительные батареи и конвекторы, которые обладают малой инерционностью. Отопление посредством нагрева полов и кафельная печь из-за большой нагреваемой массы быстро реагировать не смогут.

    Отопительный котёл должен соответствовать стандартам, говорящим об эффективном использовании энергии и отсутствии выбросов вредных веществ в атмосферу. Ныне этим требованиям отвечают конденсационные котлы, работающие на жидком топливе или газе, а также газовые паровые котлы со сверхвысоким КПД.

    Однако наиболее эффективной и обеспечивающей наибольший комфорт, является система отопления инфракрасными пленочными обогревателями, их КПД 92-97%.

    При желании уменьшить энергопотребление собственного дома встает вопрос: что нужно сделать в первую очередь - сделать более мощной систему отопления или утеплить дом? Ответ на этот вопрос однозначный. Сначала следует улучшить теплоизоляцию всех элементов дома. Поскольку для обогрева хорошо утеплённого дома потребуется более компактная и менее мощная система отопления, но хорошо отрегулированная.

    10. Пассивное и активное использование солнечной энергии.

    Экономить энергоресурсы позволяет применение в окнах стеклопакетов с меньшим коэффициентом теплопередачи. Например, 1,6 Вт/(м2-К) вместо прежних 2,3 или 2,6 Вт/(м2-К). Современный рынок предлагает стеклопакеты даже с Кт =1,3-1,1 Вт/(м2-К) . Бывают стеклопакеты и люкс-класса (0,9-0,8 Вт/(м2"К)), но они стоят значительно дороже. Наряду с экономией энергии, стеклопакеты создают в помещениях комфорт. На стоимость окна, прежде всего, влияет материал рамы и только потом - остекление. Применение стеклопакета с коэффициентом теплопередачи 1,3 или даже 1,11 Вт/м2-К не ведёт к резкому повышению стоимости окна в отличие, например, от использования деревянных рам из склеенной ангарской сосны.

    Преобразование солнечной энергии.

    Энергию солнца можно использовать не только пассивно (за счёт преимущественного расположения остеклённых поверхностей дома на южную сторону), но и активно. В этом случае речь идёт об использовании солнечных батарей и солнечных водонагревателей, с помощью которых можно подогревать воду для ванной, душа и системы отопления.

    1. Жидкостный солнечный коллектор;
    2. Щит автоматики;
    3. Теплообменник;
    4. Разбор подогретой воды;
    5. Змеевик контура отопительного котла;
    6. Змеевик-теплообменник солнечной станции;
    7. Трубопровод подпитки теплообменника;
    8. Трубопровод подпитки солнечного коллектора.

    При проектировании дома необходимо предусмотреть прокладку теплоизолированных труб от солнечного к потребителям горячей воды. Процесс преобразования солнечной энергии в электрическую через фотоэлектрические элементы, сегодня уже достаточно совершенен, но пока для частного домостроения экономически оправдано только использование солнечных водонагревателей.

    Наряду с потерями тепла через конструктивные элементы здания, оно теряется и при вентилировании помещений.

    Проверено, что в условиях хорошо утеплённого дома вентиляционные потери тепла достигают 30-50%. При этом тепло теряется в результате замены тёплого воздуха на свежий, но более холодный.

    Этот процесс совершенно необходим для создания нормальных микроклиматических условий в доме. Потребность в вентиляции особенно заметна в энергоэффективном доме, где пути проникновения в дом холодного свежего воздуха надёжно перекрыты уплотнениями.

    Эффективным решением в борьбе с теплопотерями, является монтаж системы вентиляции с рекуперацией (возвратом) тепла, которое у современных моделей достигает 80-85%.

    На этапе проектирования нужно обязательно предусмотреть место расположения рекуператора и трубопроводов.

    Однако эффективная система вентиляции, исходя из практики, является самым распространенным элементом строительства, на котором всегда экономят. Поскольку потребность жильцов дома в чистом свежем воздухе не уменьшается, им приходится постоянно оплачивать перерасход электроэнергии или газа, который уходит на компенсацию выветриваемого тепла.

    Задумайтесь: какой смысл дополнительно уплотнять и утеплять конструкции помещений, если тепло уходит наружу через открытые окна и двери?

    Без установки эффективной системы вентиляции с этими теплопотерями остается смириться. Их можно только немного сократить, на 25-30% (или на 10-15% от общего объема потерь тепла) за счет правильного проветривания. Вне отопительного сезона, естественно, вентилировать дом можно сколько угодно. Проводить так называемое сквозняковое вентилирование, рекомендуется хотя бы в порядке соблюдения гигиенических норм. Полезно не менее двух-трёх раз в день на короткое время настежь открывать окна, создавая сквозняк.

    Время, необходимое для воздухообмена, зависит от температуры и влажности наружного воздуха и силы ветра. Чем холоднее и суше на улице, тем короче должен быть процесс проветривания. Водяной пар, а также запахи, образующиеся при принятии ванны или душа, следует сразу же удалять проветриванием помещения. В зимнее время это нужно делать осторожно, так как сквозняк может не только нанести вред здоровью обитателей дома, но и повлечь за собой потерю значительного количества тепла. Известно, человек не лишён слабостей, к которым можно отнести и непреднамеренное пренебрежительное отношение к соблюдению правил. В данном случае - это правила проветривания помещений. Зачастую, когда жарко, мы не уменьшаем мощность системы отопления, а открываем форточку. Так не поручить ли это дело вентиляционной технике, управляемой компьютером в автономном режиме?

    Телевизоры, стиральные машины, электрочайники, утюги, варочные панели, сплит-системы, лампочки - все они потребляют значительное количество электроэнергии. Сегодня сократить ее расход достаточно просто. Нужно при покупке каждого электроприбора обращать на его класс энергопотребления, он должен быть ААА.

    Для освещения дома лучше всего использовать лампы на основе LED технологии. Светодиодная лампа является одним из самых экологически чистых источников света. Принцип свечения светодиодов позволяет использовать в производстве и работе самой лампы безопасные компоненты. Они не содержат токсичных веществ, поэтому не представляют опасности в случае выхода из строя или разрушения. Срок службы светодиодной лампы составляет до 100 000 часов. А повышенная энергоемкость позволяет потреблять в 10 раз меньше электроэнергии по сравнению с традиционными лампами накаливания.

    13. Экономный расход воды и возврат теплоты от использованной теплой воды.

    Производители сантехнического оборудования за последнее десятилетие разработали много различных конструкций смесителей, кранов и других элементов сантехнического оборудования, которые позволяют сократить расход воды на 40-50%, без потери моющих свойств потока воды.

    Разработаны инновационные системы полива цветников и газонов частных домов, которые сокращают расход воды на полив 40-60%. Системы объединяют в себе локальные датчики, региональные прогнозы погоды и интеллектуальный алгоритм для выбора оптимального режима полива растений на приусадебном участке. Датчики вставляются в каждую зону полива и отслеживают влажность, температуру почвы и освещенность территории. В систему встроен микроконтроллер, который подсоединяет датчики по беспроводной технологии Wi-Fi к домашней сети для контроля времени и продолжительности полива. А микроконтроллер, анализируя все полученные данные, сам выбирает оптимальный режим полива.

    В 2012г. конструкторы систем рекуперации частных домов из Англии и Бельгии представили очень компактные системы, которые позволяют возвращать тепловую энергию от сточных вод обратно в дом. КПД таких систем около 60%.

    СТОИТ ЛИ ВСЕ ЭТО ТОГО, ЧТОБЫ НЕСТИ ДОПОЛНИТЕЛЬНЫЕ РАСХОДЫ ПРИ СТРОИТЕЛЬСТВЕ?

    Ответ на этот вопрос могут дать реальные цифры экономии и подтвержденные факты.

    1. Стоимость самого популярного в России источника тепловой энергии –природного газа в 2017г. в Ростове-на-Дону составляла 5,5 руб./м3. Тенденция цены – ежегодный плавный рост до уровня общемировых цен, как это уже произошло с бензином, стоимость которого на внутреннем рынке сравнялась с его стоимостью на рынках Европы и Северной Америки. Сегодня средняя цена 1м3 природного газа, например в Европе, составляет 0,37 $/м3, т.е. 13,3 руб./м3. Если предположить, что ежегодное повышение цены составит всего 9%, то цена газа на внутреннем рынке достигнет уровня среднемировой к 2025г.
    2. Среднемесячный объем энергопотребления газа в зимний период обычным домом 100м2 (ж/б фундамент, система «теплый пол» без утепления, стены 1,5 кирпича с цементной штукатуркой, с обычными металлопластиковыми окнами, утеплением кровли 150мм и без приточно-вытяжной вентиляции с рекуперацией тепла), составляет 850-900м3. В ценах 2017г. это 4,8т.р./месяц, но в 2025г. с очень высокой степень вероятности, отопление этого дома будет в среднем стоить 11,5т.р./месяц, или около 60000 руб. за отопительный период.
    3. Собственники домов вышеописанной конструкции, имеющие столь огромные расходы на отопление, будут вынуждены делать их утепление, минимальная стоимость которого в ценах 2017г., для 1эт. дома 100м2 (чтобы привести в соответствие со СНиП 2302-2003 «Тепловая защита зданий») составляет около 320 тыс.руб. Если они не будут заниматься теплоизоляцией, то им придется смириться с тем, что суммы оплаты за потребленные энергоресурсы будут огромны, их дома будут оценены рынком значительно ниже, чем те, которые построены в соответствии со стандартами энергосбережения. Покупатели домов проверяют это просто, они поросят квитанции об оплате коммунальных платежей за прошлый год.

    Самые актуальные вопросы:

    На сколько увеличится стоимость строительства, если все делать сразу в соответствии с существующими нормативами по теплосбережению?

    В среднем от 3% до 10%, все зависит от архитектурного проекта, изначально правильно выбранных инженерных решений по конструкции дома, строительных материалов и технологий.

    Через сколько лет эти дополнительные вложения в сохранение тепла окупятся?

    Например: при строительстве 1эт. дома 100м2 (по классической вышеописанной схеме), первоначальная стоимость возведения составила 2100 тыс. руб. После корректировки, с целью уложиться в требования СНиП 2302-2003 «Тепловая защита зданий», смета увеличилась на 90 тыс.руб. При этом энергопотребление снизится не менее, чем на 30% (обычно 35-40%), а ежегодная экономия за отопительный период составит не менее 1400м3 природного газа. В 2017г. цена 1м3 газа в Ростове-на-Дону составляла 5,5руб. При условии ежегодного подорожания газа не более, чем на 9%, затраты окупятся на 8-й год. Однако гораздо важнее то, что спустя эти 8 лет все равно придется проводить комплекс мероприятий по энергосбережению дома, чтобы его содержание не стало тяжелым финансовым бременем для семьи. А стоимость переделки элементов дома будет почти в 4 раза дороже, по сравнению 80 тыс.руб. затрат на энергосбережение на этапе строительства.


    Есть реальные примеры построенных Вами домов, у которых на 30-40% меньше расход газа на отопление, без ущерба для комфорта проживания?

    Более 70% наших Клиентов приняли решение о строительстве таких домов, и уже живут в них. Однако, с 2014г. мы начали предлагать заказчикам и реализовывать в проектах комплексные инженерные решения по всем конструкциям элементов дома, которые позволяют сократить расход энергоресурсов во время эксплуатации еще на 20-30%.

    Россия – это страна с холодным климатом, где средний срок отопительного сезона составляет семь месяцев. А в связи с постоянным ростом цен на энергоносители, строительство дома с низким энергопотреблением становится, как никогда актуальна

    Россия – это страна с холодным климатом, где средний срок отопительного сезона составляет семь месяцев. А в связи с постоянным ростом цен на энергоносители, строительство дома с низким энергопотреблением становится, как никогда актуальна.

    С каждым днём всё большее количество людей задумывается о применении энергоэффективных технологий. И это неудивительно, ведь каждый из нас хочет жить в тёплом и самое главное – экономичном доме.

    1. Энергоэффективный дом – это…

    Какой смысл мы вкладываем в словосочетание – энергоэффективный дом?

    По мнению руководителя компании ТКДом Александра Водовозова – энергоэффективный дом – это здание, в котором сведены к минимуму все энергопотери, а также энергопотребление. Основным принципом строительства энергоэффективного дома является достижение максимальной герметичности жилища, использование энергосберегающих технологий и ликвидация мостиков холода.

    В России, основные энергозатраты приходятся на отопление, поэтому главной задачей становится предотвращение потерь тепла через ограждающие конструкции дома – пол, стены, окна, перекрытия и крышу. Этого можно добиться с помощью современных технологий каркасного строительства. За счет применения утеплителей и специальных способов обшивки каркаса, полностью исключается наличие щелей.

    Таким образом, для строительства энергоэффективного дома необходимо:

    Возвести утеплённый фундамент. А в каркасном строительстве, подобный фундамент ещё играет роль и теплоаккумулятора;

    Установить высокоэффективную систему вентиляции с рекуператором. Так как через вентиляцию теряется 30-40% тепла, то применение подобной системы позволит существенно снизить расход энергии на подогрев приточного воздуха;

    Расположить жилые комнаты в южной части здания. Что позволит использовать солнечную энергию как дополнительный источник тепла;

    Произвести максимальное утепление ограждающих конструкций. Ведь именно через них происходит основная теплопотеря.

    Но зачастую, застройщики просто не хотят вкладываться в дополнительное утепление, полагая, что это приведёт к увеличению стоимости возводимого здания. Так выгодно ли строить энергоэффективный дом?

    Если говорить языком цифр, то возведение энергоэффективного дома обходится примерно на 15% дороже обычного, но зато в эксплуатации он дешевле на 60-70%.

    Можно сказать, что строительство энергоэффективного дома является комплексным мероприятием, позволяющим экономить ваши денежные средства в обозримом будущем.

    2.Фундамент «Утеплённая Шведская Плита» - как основа энергоэффективного дома


    Существует мнение, что дополнительное утепление фундамента напрасная трата средств. Но так ли это на самом деле?

    Потери тепловой энергии происходят постоянно, различают только интенсивность в зависимости от типа конструкции. Например, наибольший тепловой поток проходит через верхние кровельные конструкции, что связано с плотностью теплого и холодного воздуха. Теплый воздух стремится подняться вверх, вместе с этим увлекая за собой и тепловую энергию. Также происходит и большая потеря тепла через фундамент.

    Все потери тепла можно разделить на тепловые потери, которые возможно предотвратить и те, которые поддаются незначительному сокращению! Например, потери тепла через фундамент в среднем составляют 10-15% от общего объёма теплопотерь здания. Поэтому строительство энергоэффективного дома необходимо начать с возведения утеплённого фундамента.

    Одним из эффективных способов снизить энергозатраты на отопление здания становится строительство дома на фундаменте типа "Утепленная Шведская Плита". Для этой цели применяется экструзионный пенополистирол.При выборе утеплителя следует обратить внимание на показатель теплопроводности. Чем он меньше, тем лучше, поскольку потребуется меньшая толщина слоя теплоизоляции.

    При устройстве плитных энергоэффективных фундаментов также следует помнить о таком важном показателе – как прочность утеплителя на сжатие. Поскольку такие фундаменты утепляются снизу, утеплитель должен выдерживать вес целого дома, со всеми переменными нагрузками!

    3.Выбор оптимальной толщины утеплителя

    Через стены теряется до 20-30% тепла. Какую толщину утеплителя необходимо выбрать для строительства энергоэффективного дома?

    В первую очередь толщина слоя утеплителя зависит от конструкций здания. Если при каркасной технологии, для Центрального региона России, рекомендуемая нормами толщина теплоизоляции составляет 150 мм, а оптимальная с точки зрения энергоэффективности толщина будет 250-300 мм, то при строительстве дома из пенобетона, эффективная толщина составит 150-200 мм, при нормативной 80 мм. Для крыши следует использовать не менее 250-300 мм утеплителя. Помимо оптимальной толщины, при выборе утеплителя надо учитывать, что теплоизоляция выпускается различных марок для применения в различных строительных конструкциях, где каждый вид продукта решает определенную задачу и отвечает соответствующим требованиям.

    Возведение энергоэффективного дома предполагает баланс между стоимостью материалов и качественной теплоизоляцией стен и крыши. Поэтому, нет необходимости увеличивать слой утеплителя больше чем на 30% от рекомендованной величины. Иначе увеличивается смета, и проект становится нерентабелен.

    4. Чем толще стены – тем теплее дом?

    Подразумевая энергоэффективность частного дома нужно думать не только о снижении внутреннего потребления энергии, но также и о дополнительных способах аккумулирования тепла, которые позволят снизить расходы на отопление. Существует заблуждение, что чем толще кладка стены строящегося дома, тем он будет теплее, но так ли это на самом деле?

    Есть принципы и технологии, которые необходимо использовать при проектировании и строительстве. А энергоэффективность дома в первую очередь будет зависеть от толщины используемого утеплителя.

    Так какими принципами и технологиями нужно всё же руководствоваться при строительстве энергоэффективного дома?

    В первую очередь застройщик должен понять, что основной принцип строительства энергоэффективного дома заключается в экономии тепловой энергии. Современные технологии позволяют уменьшить тепловые потери дома, до величины внутреннего излучения от людей и электроприборов.Несколькосложнее дела обстоят с электроэнергией и горячим водоснабжением. Их потребление, как правило, сильно снизить не удается, т. к. они в основном зависят от привычек хозяев и напрямую влияют на комфорт проживания.

    Потенциальный заказчик должен вначале заказать проект в серьезной проектной организации, с опытом проектирования энергоэффективных домов;

    Еще на этапе проектирования, необходимо предусмотреть использование в конструкции дома современных видов утеплителей. Этим мы закладываем высокую величину сопротивления теплопередаче;

    Так как через окна теряется примерно 15-25% тепла, то необходимо использовать остекление со стеклопакетами из трех стекол с аргоновым заполнением.

    Существует несколько оснований для того, чтобы выполнить строительство своего собственного дома по энергоэффективным технологиям. Основной причиной является то, что при эксплуатации вашего жилища вы понесете меньшие затраты. Но также немаловажно, что при продаже такие варианты будут более привлекательными для покупателей, да и цену за него можно выставить гораздо выше.

    В связи с последними событиями на мировом рынке энергоресурсов можно сделать следующий вывод. Цена за основной источник энергии, а именно нефть, очень нестабильна и будет постоянно расти. Если заглянуть в прошлое и проанализировать стоимость на нефть, то эти утверждения подтвердятся. Поэтому приходится каким-то образом выкручиваться, к примеру, планировать строительство энергоэффективных домов и покупку энергоэффективного оборудования.

    Не только материальная выгода является преимуществом такого вида домов. Ведь, сокращая потребление энергоресурсов, мы очищаем нашу атмосферу от вредных примесей и веществ, возникающих при сжигании топлива. Большинство считает, что это ничтожный вклад для очищения нашей планеты, а население продолжает приобретать а также заболевания эпидермиса и желудка. Однако это не совсем так, только сообща люди могут справиться с этой напастью.

    На что мы тратим энергию в наших домах?

    Если взять обычный рядовой дом, то можно выделить несколько "пожирателей" энергии:

    • различные электроприборы;
    • свет;
    • тепло;
    • нагрев воды.

    Около 72% от всей энергии тратится на обогрев наших жилищ. Все потому, что раньше в нашей стране не задумывались об экономии и строили дома, не уделяя особое внимание теплоизоляции. В странах Европы ситуация не такая плачевная, однако их показатель тоже оставляет желать лучшего - 57%.

    Разберемся с понятием энергостандартов

    Энергоэффективное строительство стало популярным в девяностых. Первыми заинтересовались этим Германия, Франция, Швеция и Швейцария. Европейские специалисты начали связывать потери энергии с плохой теплоизоляцией домов, неправильной формой зданий, а также с плохим расположением построек относительно сторон света. Затраты на исправление этих недостатков несущественны, так почему же не экономить? Тогда-то и началось разделение жилых зданий на типы:

    • Энергоэффективный дом. Таковым считается постройка, потребляющая не больше семидесяти процентов тока от энергии, которую потребляет обычный дом. Кроме того, в таких сооружениях используются установки, работающие от (ветряки, солнечные батареи) и теплоизоляция около пятнадцати сантиметров.
    • Постройка с низким потреблением. Здесь соотношение к потреблению стандартного дома не более чем сорок пять процентов, а изоляция порядка двадцати сантиметров.
    • Пассивной постройкой считается постройка с очень низким потреблением - 30% по сравнению со стандартными домами. Инженеры добиваются таких результатов благодаря отличной изоляции, правильному использованию тепла - естественного и того, которое бездарно расходуется в вент-системах. Обычно такие дома оборудуются теплоизоляцией толщиной в тридцать сантиметров, автономным источником электроэнергии и тепла.
    • Постройки, не потребляющие энергию. Да, планируется использовать и такие, мало того, они еще и будут отдавать в сеть электроэнергию. Однако пока это только лишь эксперимент. Теплоизоляция в таких домах - сорок сантиметров.

    Расчет необходимого тепла

    Если брать в расчет, что больше всего электроэнергии тратится на тепло, то энергостандарт дома выбирается исходя из коэффициента Е. Он обозначает сезонную потребность в тепле - отражает количество, необходимое для отопления квадратного метра. Разберем, от чего зависит этот коэффициент:

    • Качество теплоизоляции.
    • Тип вентиляции.
    • Ориентация здания по сторонам света.
    • Количество бытового тепла.

    Также стоит отметить коэффициент нормированного сезонного потребления тепла Е0. Он также определяет необходимое количество тепла для обогрева кубического метра, но при условии, что строение возведено с соблюдением всех норм и правил. Е0 рассчитывается как отношение площади внешних стен к обогреваемому объему.

    Насколько выгоден энергоэффективный дом?

    Технологии совершенствуются, и если смотреть в будущее, то можно сказать: строительство таких домов - это экономично. Сейчас капиталовложения, выделяемые на возведение пассивного сооружения, на 20 процентов больше затрат на постройку стандартного здания. Спустя несколько лет разница уменьшится на 10 процентов. И это можно подтвердить по опыту зарубежных строителей. Энергоэффективный жилой дом - хороший вариант для инвестирования. Подтвердим это, рассмотрев следующий пример. В качестве примера возьмем обычный загородный дом площадью 150 квадратов, в котором проживает одна семья. В качестве тепловой установки в этом доме выберем газовый котел. Тогда затраты на эксплуатацию жилища будут следующими:

    • отопление - 144 кВт/м 2 ;
    • нагрев воды - 30 кВт/м 2 ;
    • бытовые нужды (электроприборы, приготовление пищи, свет) - 26 кВт/м 2 .

    В таком случае получается, что за год такой дом потребит 30 000 кВт. Если же вместо стандартного дома взять энергоэффективный деревянный дом, картина будет следующая:

    • отопление - 44 кВт/м 2 ;
    • нагрев воды - 30 кВт/м 2 ;
    • бытовые нужды (электроприборы, приготовление пищи, свет) - 26 кВт/м 2.

    Потребит за год 15 000 кВт. Итого, можно сэкономить на эксплуатации дома около 50%. Очень обнадеживающая информация.

    Площадь окон

    Сейчас, на вновь возводимых зданиях, нередко можно встретить большие Однако конструкция окон не позволяет добиться теплозащиты, близкой к теплозащите капитальных стен. С другой стороны, с позиции освещенности помещений, большие окна уменьшают на искусственное освещение. Приходится искать золотую середину. При проектировании самым оптимальным считается отношение 6:1, где 6 - это площадь пола, а 1 - окна. Например, возьмем энергоэффективный дом и помещение площадью 36 квадратных метров. Оптимальная площадь остекления тогда будет около 6 квадратных метров.

    Проектирование энергоэффективных домов. Каталоги проектов

    Статистика говорит, что на западе около 80% частных жилищ возводится по готовым проектам. А можно ли построить на базе этих вариантов энергоэффективный дом? Проекты в большом количестве находятся в специальных каталогах, а какой из множества вариантов выбрать?

    Очень важная задача - сократить потребление электроэнергии до минимума. Как отмечалось выше, львиная доля ее тратится на обогрев помещений в зимнее время. Однако стоит понимать, что, увеличив слой теплоизоляции, дом не сделать энергоэффективным. Тут подход должен быть комплексным. Очень важно убрать все мостики холодного воздуха, а также предусмотреть механическую вентиляцию.

    Уделяем внимание стенам и крыше

    Перед приобретением проекта он должен быть тщательно изучен на предмет соблюдения непрерывной теплоизоляции. Энергоэффективный дом - это постройка, для которой очень важен вопрос герметичности.

    Благодаря данной характеристике холодный воздух не будет поступать в помещение. Герметичным должно быть все, начиная от дверей и заканчивая крышей. Стены таких домов оштукатуриваются двойным слоем, а кровля выполняется с теплоизоляцией и пароизоляцией. Места стыков и креплений закрываются специальной клейкой лентой.

    Расчет энергоэффективности

    Как отмечалось выше, энергоэффективной считается постройка, потребляющая не больше семидесяти процентов электрической энергии от того количества, которое потребляет обычный дом. Рассмотрим коэффициент Е и его величину:

    • Для обычного дома коэф. Е меньше или равен 110 кВт/м 2 .
    • Для энергоэффективного дома коэф. Е меньше или равен 70 кВт/м 2 .
    • Для коэф. Е меньше или равен 15 кВт/м 2 .

    На западе более современным считается способ расчета энергоэффективности построек по коэфффициенту Ер. Он обозначает количество энергии, необходимое для отопления, вентиляции, нагрева воды, освещения и кондиционирования. Рассмотрим классификацию построек, в зависимости от Ер:

    • Для экономных построек он меньше или равен 0,5.
    • Для энергосберегающих построек коэф. Ер меньше или равен 0,75.
    • Для обычных построек он меньше или равен 1.
    • Для пассивных построек коэф. Ер меньше или равен 0,25.
    • Для самых энергозатратных построек Ер больше 1,5.

    Вопрос вентиляции и обогрева

    Мы уже говорили о том, что энергоэффективный дом должен быть обустроен механической вентиляцией, с функцией получения тепла. Поэтому, выбирая проект, нужно удостовериться, что в доме предусмотрена такая вентиляция. Это важно, поскольку обычная вентиляция не будет функционировать в герметичном доме. Также стоит отметить, что гравитационная вентиляция хорошо работает при температурах чуть выше нулевой отметки, поэтому летом она почти бесполезна.

    В герметичных энергоэффективных домах лучше всего покажет себя механическая вентиляция, которая позволит получать тепло из удаляемого воздуха. Такая вентиляция позволит обойтись в доме без привычной водяной системы отопления, что приведет к экономии на радиаторах, трубах и нагревательных установках. Поэтому будьте внимательны, выбирая энергоэффективный дом: проекты должны предусматривать такой тип вентиляции.

    Некоторые тонкости постройки

    Разберем тонкости возведения подобных строений. Если вы планируете строить энергоэффективный дом своими руками, необходимо знать точное количество людей, которые там будут проживать. Ведь сами люди создают бытовое тепло - при стирке, приготовлении пищи, пользовании электроприборами. Получается, что слишком большие дома не будут считаться энергоэффективными при условии, что в них будут проживать несколько человек. Также внимательно надо отнестись к эффективному расходу тока, выбирая энергоэффективные приборы и оборудование. Будет полезно обустроить придомовой участок согласно сторонам света и климатическим условиям в вашем регионе.

    Заключение

    Проектирование и строительство энергоэффективных домов в будущем будет едва ли не единственным направлением в строительной отрасли. Поэтому нужно задумываться об этом прямо сейчас.

    Рассмотрим эту сторону вопроса на примере реализованных энергоэффективных домов. Первопроходцами в строительстве энергоэффективных домов являются европейские страны. Именно от них многие россияне перенимают успешный опыт и ориентируются на популярные там строительные материалы и энергоэффективные технологии. В России возведение энергоэффективных домов движется не столь активными темпами, хотя с каждым годом набирает оборот.

    В реализации таких проектов успешно принимает участие эксперт в области энергоэффективного строительства – компания ISOVER. Эксперты делятся международным опытом и предлагают тепло- и звукоизоляционные материалы, применение которых позволяют повысить класс энергоэффективности здания до A+++.

    Энергоэффективный дом в Нижегородской области

    Среди реализованных объектов - дом с ультранизким потреблением энергии в Нижегородской области. Удельное потребление энергии на отопление 165 м 2 составляет 33 кВт*ч на м 2 в год. Затраты на отопление электричеством зимой составили 62,58 кВт*ч в сутки при среднемесячной температуре -17°C. При круглосуточном тарифе 1,7 руб/кВт*ч это обходится в 3 200 руб в месяц . Дом построен по каркасной технологии. Для утепления полов применили материалы ISOVER общей толщиной 420 мм, для стен – минеральную вату ISOVER (толщина утепления 365 мм), в кровле толщина утеплителя ISOVER составила 500 мм . Система отопления здания – электрические низкотемпературные конвекторы, общая мощность которых 3.5 кВт. В доме организована система приточно-вытяжной вентиляции с рекуператором тепла и грунтовым теплообменником подогрева уличного воздуха. Для снабжения горячей водой установленывакуумные солнечные коллекторы.

    Энергоэффективный дом в Московской области

    Еще один энергоэффективный дом, построенный с участием ISOVER, - трехэтажное здание общей площадью 290,9 м2 в Чеховском районе (Московская область). Ознакомимся с ним подробнее. Два жилых этажа и эксплуатируемая мансарда размещают кухню, гостиную, гардеробную, детскую, пять спален и четыре санузла. Для сауны, комнаты отдыха, спортзала, а также инженерного оборудования выделены эксплуатируемая кровля и подвал. Данный энергоэффективный дом уникален как с точки зрения конструктивных особенностей, так и технологии утепления, и потребления энергии.

    Конструктивные и дизайнерские особенности отражаются в применении двух различных систем отделки фасадов. В доме гармонично объединили вентилируемый фасад с навесными панелями из натурального дерева и штукатурный фасад. Не допустить перегрева здания позволяет примененная европейская технология, согласно которой несущие монолитные стены здания изнутри не закрываются. Их только оштукатуривают и красят. В жаркий день такие стены забирают часть лишнего тепла, аккумулируют его и отдают ночью, обеспечивая дополнительную экономию на охлаждении и равномерно распределяя температуру во все помещения.

    На данном объекте удалось достигнуть значительного сокращения потребления энергии на охлаждение и отопление при соответствии повышенным требованиям к уровню комфорта с помощью массивной теплоизоляционной оболочки. Она создана из эффективных тепло- и звукоизоляционных материалов ISOVER толщиной от 400 мм и более.

    Для утепления дома мы применили решения ISOVER, поскольку они успешно зарекомендовали себя на других энергоэффективных объектах. Удобно, что в компании имеются квалифицированные специалисты по энергоэффективности, которые оказывают своевременную консультационную помощь», - отметил генеральный директор компании «ИнтерСтрой» Д.М. Поляк.


    Тепло и долговечность двум навесным вентилируемым фасадам обеспечивают материалы ISOVER ВентФасад Оптима , установленные в три слоя по 120 мм и ISOVER ВентФасад Верх (30 мм). Фасады, утепленные по системе штукатурный фасад, выполнены с применением продукта ISOVER ШтукатурныйФасад в два слоя по 200 мм. Такая оболочка позволяет применять для отопления и охлаждения дома альтернативные, возобновляемые источники энергии, например, геотермальную энергию Земли.

    В здании установлена вентиляция с рекуперацией тепла. Система отопления создана на базе теплового насоса. Расчеты показали, что удельное потребление тепловой энергии дома не превысит 35кВтч /м2год, что в разы ниже среднего потребления в России.

    Узнав о классах энергоэффективности зданий и сооружений, возможности их повышения для комфортных условий проживания и сокращения затрат на отопление, о базовых принципах и экономической целесообразности, дальнейшее решение в пользу строительства стандартного или энергоэффективного дома остается за вами. Делайте правильный выбор и живите долго в теплом доме.

    THE BELL

    Есть те, кто прочитали эту новость раньше вас.
    Подпишитесь, чтобы получать статьи свежими.
    Email
    Имя
    Фамилия
    Как вы хотите читать The Bell
    Без спама