THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Газогидраты

В каждой статье портала «Эковатт» мы стараемся представить вашему вниманию самую интересную и актуальную информацию о развитии нефтегазового комплекса. Сегодня в прессе всё чаще поднимается тема альтернативных источников энергии. Это не удивительно, ведь уже в обозримом будущем человечество исчерпает все месторождения природного газа, позволяющие его добычу традиционными способами. Тогда останется два пограничных варианта: переход на альтернативные виды топлива и поиск альтернативных источников.

газогидрат,газогидраты,метаногидраты, биотопливо

Пока не изобретён еще вид топлива, способный стать достойной заменой традиционным, основным направлением этого поиска становится разработка новых способов добычи топлива традиционного. Их список пока сравнительно короток: водорастворенные газы подземной гидросферы, метан угленосных толщ и природные газовые гидраты. В этой статье мы расскажем об одном из наиболее перспективных для России на сегодняшний день источников энергии, так называемых «метаногидратах».

Вначале, немного о том, что же эти загадочные газогидраты из себя представляют и почему называть их «метаногидратами» не совсем корректно. Как вы уже, наверное, догадались, газогидраты представляют собой придонные скопления газа (чаще всего, но совершенно не обязательно, метана). Эти скопления образуются в условиях низкой температуры и высокого давления. Их агрегатное состояние проще всего можно представить в качестве скопления кристаллов (рыхлый лёд).

Вся прелесть газогидратов заключается в том, что один кубометр этих кристаллов может содержать 0.87 кубометра воды и 164 кубических метра метана в газообразном состоянии. Однако, наличествует и определенное содержание других веществ. К сожалению, на сегодняшний день до сих пор не выявлен полный потенциал таких запасов. В №6 журнала «Зарубежная информация» за 2000 год приводились данные, согласно которым по предварительным оценкам на суше содержится 14×10 12 -34×10 15 кубометров, в акватории - 3.1×10 15 - 7.6×10 18 кубометров метана в газогидратах. Даже если лишь незначительную часть (10%) этих запасов считать извлекаемыми, они вдвое превысят сегодняшние мировые запасы традиционного природного газа.

Идея получения метана из газогидратов не так уж нова. Первоначально, человечество столкнулось с газогидратами в рамках организации подводных газопроводов. Когда попадавшая в трубы влага приводила к их образованию и закупорке трубопроводов. Тогда американским ученым пришлось разрабатывать специальные технологии для дополнительной герметизации и осушки труб. Однако же первыми рассматривать скопления газогидратов в качестве дополнительного источника топлива стали именно российские ученые. Точнее ещё советские.

Месторождение Мессояхское было введено в промышленную разработку еще в 1970 году. Изначально его запасы составляли около 30 миллиардов кубометров метана, из них на сегодняшний день добыто уже более половины. Согласно данным, опубликованным в №7 журнала «Газовая промышленность» за 2001 год, отечественные запасы природного газа в гидратах континентальной и шельфовой части России оцениваются 100-1000 триллионов кубометров. А по последней оценке ВНИИГАЗ в России для гидратонакопления благоприятно около 30% территории.

При этом мировые запасы крайне неоднородны. Вызвано это в первую очередь серьезными различиями гидратообразующих условий. В различных водоемах неоднородны температура и химический состав воды. Советские ученые посвятили немало времени тому, чтобы изучить природу газогидратных месторождений и составить их подробную карту для пространств бывшего СССР. Но, как понимаете, Россия не единственный счастливый обладатель подобного газопромышленного потенциала.

Большая часть ресурсов находится в акваториях мирового океана (у побережий Северной, Центральной и Южной Америки, Японии, Норвегии и Африки, и только около 2% - в приполярных частях материков. В США ресурсы месторождений на суше и шельфе были оценены Геологической службой в 6000 триллионов кубометров, и программа их выработки получила, наравне с космической и ядерной, приоритетный характер. По предварительным оценкам запасы газа в кристаллизованном состоянии на Аляске достигают 66.8 триллиона кубометров, а в Мексиканском заливе выявлено еще 1.03 триллиона кубометров метана в виде газовых гидратов. На проводимые исследования по добыче метана сенат США в 2001 году выделил около 42 миллионов долларов.

Вообще, не будет лишним отметить, что в последнее десятилетие интерес к этому подводному источнику топлива крайне обострился. В 1998 году, в дельте реки Маккенези (Канада), была пробурена экспериментальная скважина Малик (Malik), по данным которой установлено наличие мощного поля скоплений газовых гидратов. Не отстает и Индия, которая согласно одной из программ развития должна начать промышленную разработку своих газогидратных месторождений уже к 2010 году.

В 2003 году «Газпром» создал специальную экспертную группу по разведке и подготовке к промышленной разработке отечественных газогидратных залежей. В итоге это позволит компании номинально увеличить свои запасы природного газа в 50 раз (на 1400 триллионов кубометров) и вывести её на первое место по объему запасов среди ведущих мировых производителей. Однако технологии промышленной выработки газогидратных месторождений со времён советских исследований так и остаются недоработанными.

Наибольших успехов на этой ниве пока добились японские геологи. В стране восходящего солнца уже не первый год ведется разработка новых высокоточных методов геофизического каротажа и новых технологий добычи газа из месторождений гидратов: с помощью нагрева формаций, уменьшения давления или химических инъекций. А вот Норвежские исследователи предложили использовать процесс образования гидратов газа, для упрощения его транспортировки и хранения. Кроме того, разрабатывается технология применения газогидратов в качестве химического сырья для опреснения морской воды и разделения газовых смесей.

Другими словами, изучение газогидратов открыло перед человечеством массу новых интересных возможностей, местами даже не связанных с работой нефтегазового комплекса. Но, как вы уже, наверное, догадались, наличествует и ряд серьезных препятствий такому благостному повороту событий. В первую очередь это, конечно, отсутствие технологий качественной добычи и переработки. Более того, разработка газогидратных месторождений неизбежно приведет к увеличению объемов выброса природного газа в атмосферу и, как следствие, к усилению парникового эффекта.

Вторым камнем преткновения для добытчиков становится весьма неприятное свойство газогидратов «детонировать» при самых незначительных сотрясениях. При этом кристаллы быстро проходят фазу трансформации в газообразное состояние, и обретают объем в несколько десятков раз превышающий исходный. Именно это привело в своё время привело в свое время к разрушению добывающих платформ в Каспийском море. Таким образом излишне высок риск аварийности, а следовательно и резкое снижение рентабельности разработки гидратных месторождений. Однако, пока всё идет к тому, что время и ситуация на мировом рынке заставят компании пойти на заведомый риск и приобщиться к новому источнику углеводородов.

Вот почему исследование и выработка газогидратов считается на сегодняшний день наиболее перспективным технологическим направлением нефтегазовой промышленности. Наблюдая развитие ситуации с поиском новых источников топлива, невольно вспоминается сказка о колобке, слепленном хозяевами из того, что нашлось по сусекам. Насколько высоки кулинарные способности «Газпрома» и не «уйдет» ли от него метановый колобок мы узнаем уже не в самом далёком будущем.

Пока же нам остается только с интересом следить за развитием сего некогда сказочного сюжета..

газогидрат,газогидраты,метаногидраты, биотопливо

Газовые гидраты – довольно новый, однако потенциально обширный источник природного газа, способный обеспечить потребности растущих мировых экономик. По оценкам учёных, его запасы в российской Арктике составляют порядка 1000 трлн куб. м. О том, какие возможности открывает добыча газовых гидратов, какие существуют технологии их хранения и перевозки, а также о подготовке специалистов в данной области порталу arctic.ru рассказал доктор геолого-минералогических наук, профессор Владимир Станиславович Якушев.

Что такое газовые гидраты? Велики ли их запасы на территории российской Арктики?

Газовые гидраты — кристаллические соединения газов и воды переменного состава. Выглядят как снег или лед и имеют сходные с ними физические свойства. Образуются они при контакте газа и воды в определённых термобарических условиях, причём чем холоднее климат, тем чаще встречаются такие условия. В наиболее распространённом в земной коре гидрате метана соотношение между газом и водой примерно 1 к 6. При этом удельное газосодержание гидрата метана достигает 164 куб. м газа на 1 куб. м гидрата. По общему мнению нефтегазовых геологов, природные газовые гидраты содержат основной объём природного газа в литосфере. По разным оценкам, в природных гидратах содержится от 2000 до 5000 трлн куб. м газа. Значительная часть этих газовых ресурсов расположена в арктических широтах, так как именно наличие мощного (более 300 м) слоя вечной мерзлоты создаёт необходимые условия для гидратообразования, а в океане холодная вода позволяет образовываться газогидратам уже с глубины 250-300 м.

По ранее сделанным российским оценкам, в недрах арктических широт России может содержаться до 1000 трлн куб. м газа в гидратном состоянии. Однако далеко не весь этот объём можно добыть на современном уровне развития технологий. Но если хотя бы 10% этого объёма можно будет добыть, то это в значительной степени обеспечит энергоснабжение страны на многие десятилетия.

Какие угрозы таят в себе газовые гидраты?

В северных широтах с гидратами знакомы давно: если в скважине или трубопроводе устанавливается режим гидратообразования, то формируется гидратная пробка, которая блокирует движение газа или нефти и приводит к аварии. Холодный климат Арктики, наличие вечной мерзлоты способствуют возникновению режима гидратообразования в добывающем оборудовании, и на наших северных месторождениях уже давно функционируют установки для предотвращения образования гидратных пробок.

Другая старая проблема, связанная с газовыми гидратами в Арктике, — внутримерзлотные замороженные газогидраты, которые при проходке скважинами начинают разлагаться и генерировать выбросы газа, что осложняет процесс бурения, а иногда и приводит к авариям на скважинах. Причём чем дальше на север двигаются буровые станки, тем чаще и интенсивнее становятся эти выбросы. О внутренней энергии и масштабах таких газ-газогидратных внутримерзлотных скоплений могут свидетельствовать фотографии недавно обнаруженного «ямальского кратера».

Ещё одна угроза, связанная с природными гидратами, которая широко обсуждается в научной литературе, — это возможность массированного выброса в атмосферу парникового газа, метана, вызванная быстрым разложением океанических гидратов вследствие какого-либо тектонического катаклизма. Однако, по моему мнению, вероятность такого выброса крайне мала.

Как можно применять газогидраты на практике? Например, возможно ли применять газовые гидраты для газификации отдельных населённых пунктов?

Газовые гидраты можно получать и на соответствующих промышленных установках. Недавно было обнаружено новое свойство газогидратов — способность к самоконсервации при температурах ниже 0 градусов Цельсия. То есть если над сформированным гидратом сбросить давление, он начинает разлагаться и формировать на своей поверхности тонкую пленку льда, которая останавливает дальнейшее разложение. Этот эффект открыл новые возможности для транспортировки и хранения природного газа. Учитывая высокое газосодержание газогидрата (до 164 куб. м на куб. м), можно хранить и перевозить газ высокой концентрации при атмосферном давлении, то есть фактически хранить и перевозить газ как, например, уголь, только используя стандартные рефрижераторы. Такая технология сейчас разрабатывается в Японии для газификации отдалённых населённых пунктов, где не подведён газопровод. Российская Арктика представляет собой наверное, наиболее благоприятную природно-климатическую и социально-экономическую область: далеко отстоящие друг от друга небольшие посёлки, проблемы с энергоснабжением — и в то же время холодный климат, наличие вечной мерзлоты.

Как осуществляется транспортировка газовых гидратов? Насколько дорога их перевозка и хранение?

В настоящее время существует только один пилотный проект по газогидратной технологии хранения и транспорта газа. Он осуществляется в Японии и как раз направлен на то, чтобы оценить коммерческую составляющую этой технологии. Для транспортировки газогидратных брикетов построены два типа контейнеров для автомобильной перевозки — на 7 т и 0,5 т. Оба типа контейнеров предназначены для разномасштабных потребителей газа.

Технология состоит в том, что на специализированной установке производятся плотные брикеты замороженного газогидрата, эти брикеты загружаются в соответствующие автомобильные контейнеры с охлаждением (рефрижераторы) и перевозятся к месту газификации — электростанции и жилому кварталу на расстоянии до 400 км от места производства гидратов. Там путём частичного нагрева газогидраты постепенно разлагаются внутри контейнеров, выделяя необходимые объёмы газа. Затем контейнеры с оставшейся водой транспортируются обратно к месту производства гидратов.

В случае Арктики от таких герметичных контейнеров можно отказаться, т.к., если температура окружающей среды ниже 0 градусов Цельсия, замороженные гидраты можно перевозить и в негерметичных ёмкостях. Это открывает возможности для автономного газоснабжения арктических посёлков: раз в несколько лет по Северному морскому пути может проходить танкер-гидратовоз и сгружать запасы замороженных гидратов в хранилища, сооружённые в вечной мерзлоте вблизи посёлков. Оттуда гидраты могут расходоваться по мере надобности для газоснабжения посёлка. При этом ничего, кроме пресной воды, не остаётся, т.е. экология не нарушается.

Оценить стоимость такой доставки пока не представляется возможным вследствие отсутствия опытно-промышленных испытаний этой технологии в нашей стране.

Существуют ли в России возможности и технологии для их использования?

Несмотря на то что эффект самоконсервации газогидратов — основа описываемой технологии — был открыт и основательно изучен в России, до полупромышленного использования замороженных гидратов пока доросла только Япония, где этот проект реализуется уже более 10 лет. В России есть несколько патентов на промышленное использование законсервированных гидратов, но дальше этого дело не пошло: требуются серьёзные инвестиции и время на создание технологии.

Насколько важен кадровый потенциал в данном вопросе? Существуют ли в России такие специалисты и много ли их?

Это, наверное, самый важный вопрос сейчас. Дело в том, что газогидраты сами по себе достаточно сложный объект для изучения. Для их исследования требуется аппаратура высокого давления, работа с взрывоопасными газами, поэтому у нас в стране учёных, специализирующихся на изучении газогидратов, можно пересчитать по пальцам. А тех, кто работает с метастабильными состояниями газогидратов, к которым относятся замороженные гидраты, вообще единицы.

Как показывает опыт Японии, для подготовки команды специалистов, способных разработать и изготовить необходимое оборудование для производства, хранения и транспортировки гидратных брикетов, потребовалось более 10 лет. Учитывая этот опыт, в нашей стране такой срок можно было бы сократить, но для этого необходимо создание специализированного конструкторского бюро и соответствующей проектной команды.

Владимир Станиславович, существует ли мировой опыт использования газовых гидратов?

В мире нет опыта использования синтетических гидратов, т.к. эффект самоконсервации был открыт не так давно, а без этого эффекта хранение газогидратов требует сосудов высокого давления и сразу проигрывает тому же хранению газа в сжатом состоянии. Но перспективы у газогидратных технологий есть, и не только в области транспортировки и хранения природного газа.

Дело в том, что при гидратообразовании происходит разделение сырого газа на газовую фазу (это метан-бутановая группа, которая переходит в гидратное состояние) и жидкую углеводородную фазу (это углеводороды от пентана и тяжелее, которые не образуют гидраты). Кроме того, если для гидратообразования используется морская вода, то происходит её опреснение (в гидрат переходит только пресная вода). Таким образом, при формировании гидрата можно получить газовую фракцию, газоконденсатную фракцию и пресную воду. Это чрезвычайно важно для разработки удалённых морских месторождений, в том числе в Арктике, т.к. в перспективе позволяет отказаться от дорогих тяжёлых добывающих платформ, на которых в настоящее время производится подготовка газа к транспортировке.

Не секрет, что в настоящее время традиционные источники углеводородов все активнее истощаются, и этот факт заставляет человечество задуматься об энергетике будущего. Поэтому векторы развития многих игроков на международном нефтегазовом рынке направлены на освоение месторождений нетрадиционных углеводородов.

Вслед за «сланцевой революцией» резко возрос интерес и к другим видам нетрадиционного природного газа таких, как газогидраты (ГГ).

Что представляют из себя газовые гидраты?

Газовые гидраты внешне очень похожи на снег или рыхлый лед, который внутри себя таит энергию природного газа. Если рассматривать с научной стороны, то газогидрат (их еще называют клатратами) - это несколько молекул воды, удерживающих внутри своего соединения молекулу метана или другого углеводородного газа. Образуются газовые гидраты при определенных температурах и давлениях, что дает возможность существовать такому «льду» в плюсовых температурах.

Образование газогидратных отложений (пробок) внутри различных объектов нефтегазового промысла является причиной крупных и частых аварий. К примеру, по одной из версий, причиной крупнейшей аварии в Мексиканском заливе на платформе Deepwater Horizon стала гидратная пробка, образовавшаяся в одной из труб.

Благодаря своим уникальным свойствам, а именно - высокой удельной концентрации метана в соединениях, большой распространённости по побережьям, природные газогидраты с середины XIX века считаются основным источником углеводородов на Земле, составляя примерно 60% от общего объема запасов. Странно, не правда ли? Ведь мы привыкли слышать из СМИ только о природном газе и нефти, но, возможно, в перспективе 20−25 лет борьба будет идти уже за другой ресурс.

Для понимая всей масштабности газогидратных залежей, скажем, что, например, общий объём воздуха в атмосфере Земли в 1,8 раза меньше предположительных объёмов газогидратов. Основные скопления газогидратов расположены в непосредственной близости к полуострову Сахалин, шельфовых зонах северных морей России, северном склоне Аляски, вблизи островов Японии и южном побережье Северной Америки.

В России содержится около 30 000 трлн. куб. м. гидратного газа, что на три порядка превышает объемы традиционного природного газа на сегодняшний день (32,6 трлн. куб. м.).

Важной проблемой является экономическая составляющая при разработке и коммерциализации газовых гидратов. Уж слишком дорого сегодня их добывать.

Если бы сегодня к нашим с вами плитам и котлам поступал бытовой газ добытый из газовых гидратов, то 1 кубометр стоил бы, примерно, в 18 раз дороже.

Как их добывают?

Добывать клатраты сегодня можно различными способами. Есть две основными группы методов - добыча в газообразном состоянии и в твердом состоянии.

Наиболее перспективной считается добыча в газообразном состоянии, а именно метод разгерметизации. Вскрывают залежь, где располагаются газогидраты, давление начинает падать, что выводит «газовый снег» из равновесия, и он начинает распадаться на газ и воду. Данную технологию уже применили Японцы в своем пилотном проекте.

Российские проекты по исследованию и разработке газовых гидратов начались еще во времена СССР и считаются фундаментальными в данной области. В связи с открытием большого числа традиционных месторождений природного газа, отличающихся экономической привлекательностью и доступностью, все проекты были приостановлены, а накопленный опыт перешел к зарубежным исследователям, оставляя не у дел многие перспективные разработки.

Где применяют газовые гидраты?

Малоизвестный, но очень перспективный энергоресурс можно применять не только для топки печей и приготовления пищи. Результатом инновационной деятельности можно считать технологию транспортировки природного газа в гидратном состоянии (HNG). Звучит очень сложно и страшно, но на практике все более, чем понятно. Человек придумал «упаковывать» добытый природный газ не в трубу и не в резервуары танкера СПГ (сжижение природного газа), а в ледяную оболочку, проще говоря - делать искусственные газовые гидраты для транспортировки газа к потребителю.

При сопоставимых объёмах поставок товарного газа эти технологии потребляют на 14% меньше энергии , чем технологии сжижения газа (при перевозке на небольшие расстояния) и на 6% меньше при перевозках на расстояния в несколько тысяч километров, требуют наименьшего снижения температуры хранения (-20 градусов C против -162). Обобщая все факторы, можно сделать вывод - газогидратный транспорт экономичнее транспорта в сжиженном состоянии на 12−30%.

При гидратном транспорте газа потребитель получает два продукта: метан и пресную (дистиллированную) воду, что делает подобный транспорт газа особо привлекательным для потребителей, расположенных в засушливых либо заполярных районах (на каждые 170 куб. м. газа приходится 0,78 куб. м. воды).

Подводя итоги можно сказать, что газовые гидраты являются основным энергоресурсом будущего в мировом масштабе, а также несут колоссальные перспективы для нефтегазового комплекса нашей страны. Но это очень дальновидные перспективы, эффект от которых мы сможем увидеть через 20, а то и через 30 лет, не ранее.

Не принимая участие в масштабной разработке газовых гидратов, российский нефтегазовый комплекс может столкнуться с некоторыми значительными рисками. Увы, сегодняшние низкие цены на углеводороды и экономический кризис все больше и больше ставят под вопрос исследовательские проекты и начало промышленной разработки газовых гидратов, особенно в нашей стране.

Национальный минерально-сырьевой университет Горный

Научный руководитель: Гульков Юрий Владимирович, кандидат технических наук, Национальный минерально-сырьевой университет Горный

Аннотация:

В данной статье рассматриваются химические и физические свойства газовых гидратов, история их изучения и исследования. Кроем того, рассматриваются основные проблемы, препятствующие организации коммерческой добычи газовых гидратов.

In this article we describes chemical and physical characteristics of gas hydrates, the history of their study and research. In addition, the basic problems hindering the organization of commercial production of gas hydrates аре considered.

Ключевые слова:

газогидраты; энергетика; коммерческая добыча; проблемы.

gas hydrates; power engineering; commercial extraction; рroblems.

УДК 622.324

Введение

Первоначально человек использовал собственные силы как источник энергии. Через некоторое время на помощь пришли энергия дерева и органики. Около века назад основным энергоресурсом стал уголь, через 30 лет его первенство разделила нефть. Сегодня энергетика мира зиждется на триаде газ-нефть-уголь. Однако, в 2013 году это равновесие было смещено с в сторону газа японскими энергетиками. Япония- мировой лидер импорта газа. Государственная корпорация нефти, газа и металлов (JOGMEC) (Japan Oil, Gas & Metals National Corp.) сумела первой в мире получить газ из гидрата метана на дне Тихого океана с глубины 1,3 километра . Пробная добыча длилась всего 6 недель, не смотря на то, что в плане рассматривалась двухнедельная добыча, было добыто 120 тыс куб м природного газа Это открытие позволит стране стать независимой от импорта, в корне изменить свою экономику. Что такое газогидрат и как он может повлиять на мировую энергетику?

Целью данной статьи является рассмотрение проблем в освоении газогидратов.

Для этого были поставлены следующие задачи:

  • Изучить историю исследования газогидратов
  • Изучить химические и физические свойства
  • Рассмотреть основные проблемы освоения

Актуальность

Традиционные ресурсы распределены по Земле не равномерно, кроме того, они ограничены. По современным оценкам запасов нефти по сегодняшним меркам потребления хватит на 40 лет, энергоресурсов природного газа- на 60-100. Мировые же запасы сланцевого газа оцениваются примерно в 2 500-20 000 трлн. куб. м. Это энергетический резерв человечества более чем на тысячу лет Коммерческая добыча гидратов подняла бы мировую энергетику на качественно новый уровень. Другими словами, изучение газогидратов открыло перед человечеством альтернативный источник энергии. Но существует и ряд серьезных препятствий их изучению и коммерческой добычи.

Историческая справка

Возможность существования газогидратов была предсказала Стрижовым И.Н., но он говорил о нецелесообразности их добычи. Гидрат метана в лаборатории впервые получил Виллар в 1888 году, вместе с гидратами других легких углеводородов. Первоначальные столкновения с газогидратами, рассматривались как проблемы и помехи в добыче энергии. В первой половине XX века было установлено, что газогидраты являются причиной пробкообразования в газопроводах, расположенных в арктических районах (при температуре выше 0 °С). В 1961г. было зарегистрировано открытие Васильева В.Г., Макагона Ю.Ф., ТребинаФ.А., Трофимука А.А., Черского Н.В. «Свойство природных газов находиться в твердом состоянии вземной коре» , возвестившее о новом природном источнике углеводородов- газогидрате. После этого заговорили об исчерпаемости традиционных ресурсов громче, и уже через 10 лет было обнаружено первое месторождения газогидратов в январе 1970 в Заполярье, на границе Западной Сибири, оно носит название Мессояхское. Далее были проведены крупные экспедиции ученых как СССР, так и многих других стран.

Слово химии и физики

Газогидраты - это молекулы газа, облепленные вокруг молекулами воды, словно «газ в клетке». Это называется водный клатратный каркас. Представьте, что летом вы поймали бабочку в ладони, бабочка- это газ, ваши ладони-молекулы воды. Т.к вы охраняете бабочку от внешних воздействий, но она сохранит свою красоту и индивидуальность. Так и газ ведет себя в клатратном каркасе.

В зависимости от условий образования и состояния гидратообразователя внешне гидраты выглядят в виде четко выраженных прозрачных кристаллов разнообразной формы или представляют собой аморфную массу плотно спрессованного «снега».

Гидраты залегают при определенных термобарических условиях- фазовое равновесие. При атмосферном давлении газовые гидраты природных газов существуют вплоть до 20-25 °C. Благодаря своей структуре единичный объём газового гидрата может содержать до 160—180 объёмов чистого газа. Плотность гидрата метана около 900 кг/м³, что ниже плотности воды и льда. При нарушении фазового равновесия: повышении температуры и/ или уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа, обладают низкой теплопроводностью.

Разработка

Газогидраты труднодоступны,т.к. к настоящему времени установлено, что около 98% залежей газогидратов сосредоточены на шельфе и континентальном склоне океана, на глубинах воды более 200 - 700 м, и только всего 2% - в приполярных частях материков. Поэтому, проблемы в освоении коммерческой добычи газовых гидратов встречаются уже на этапе разработки их месторождений.

На сегодняшний день существует несколько методов обнаружения залежей газовых гидратов: сейсмическое зондирование, гравиметрический метод, измерение теплового и диффузного потоков над залежью, изучение динамики электромагнитного поля в исследуемом регионе и др.

При сейсмическом зондировании используются данные двухмерной (2-D) сейсморазведки при наличии свободного газа под гидратонасыщенным пластом определяется нижнее положение гидратонасыщенных пород. Но при сейсморазведке нельзя обнаружить качество залежи, степень гидратонасыщенности пород. Кроме того, сейсморазведка не применима на сложных рельефах.Но она выгодна более всех с экономической стороны, однако, лучше ее использовать в дополнении с другими методами.

Например, пробелы можно заполнить применив в дополнении с сейсморазведке электромагнитную разведку. Она позволит более точно охарактеризовать породу, благодаря индивидуальным сопротивлениям в точках залегания газогидратов. Министерство энергетики США планирует проводить ее с 2015 года. Сейсмоэлектромагнитный способ применялся для разработки Черноморских месторождений.

Также рентабельно разрабатывать месторождение насыщенных залежей комбинированным методом разработки, когда процесс разложения гидратов сопровождается снижением давления с одновременным тепловым воздействием. Понижение давления позволит сэкономить тепловую энергию, затрачиваемую на диссоциацию гидратов, а прогрев поровой среды будет препятствовать повторному образованию газогидратов в призабойной зоне пласта.

Добыча

Следующим камнем преткновения является непосредственно добыча гидратов. Гидраты залегают в твердой форме, что вызывает трудности. Так как газогидрат залегает в определенных термобарических условиях, то при нарушении одного из них он будет разлагаться на газ и воду, в соответствии с этим были разработаны следующие технологии извлечения гидратов.

1. Разгерметизация:

Выводы гидрат из фазового равновесия он разложится на газ и воду. Эта технология славится своей тривиальностью и экономической целесообразностью, кроме того на ее плечи ложится успех первой добычи японцев 2013 года. Но не все так радужно: образовавшаяся вода при низких температурах может закупорить оборудование. Кроем того, технология действительно эффективна, т.к. при проведении пробной добычи метана на месторождении Маллик за 5,5 дней было добыто 13 000 куб. м газа, что во много раз превышает показатели добычи на этом же месторождении по технологии нагревания — 470 куб. м газа за 5 дней. (см. таблица)

2. Нагревание:

Снова нужно разложить гидрат на газ и воду но уже по средствам подведения тепла. Подвод тепла может осуществляться разными способами: впрыскивание теплоносителя, циркуляция горячей воды, нагрев паром, нагрев электричеством. Хотелось бы остановиться на интересной технологии придуманий исследователями из Дортмундского университета. Проект предполагает прокладку трубопровода до залежей газогидратов на морском дне. Особенность его в том, что у трубы двойные стенки. По внутренней трубе к месторождению подается морская вода, нагретая до 30-40˚С, температуры фазового перехода, и пузырьки газообразного метана вместе с водой поднимаются по внешней трубе наверх. Там метан отделяется от воды, отправляется в цистерны или в магистральный трубопровод, а теплая вода возвращается вниз, к залежам газогидратов. Однако, этот метод добычи требует высоких затрат, постоянного увеличения подводимого количества теплоты. При этом газогидрат разлагается медленнее.

3. Введение ингибитора:

Также для разложения гидрата использую ввод ингибитора. В Институте Физики и Технологии Университета Бергена в качестве ингибитора рассмотрели углекислый газ. С помощью этой технологии можно получить метан без непосредственной добыче самих гидратов. Этот метод уже тестируется Японской Национальной Корпорацией Нефти, Газа и Металлов (JOGMEC) при поддержке Американского Департамента Энергетики. Но эта технология таит в себе экологическую опасность, требует высоких затрат. Реакции при этом протекает медленнее.

Название проекта

Дата

Страны-участницы

Компании

Технология

Маллик, Канада

Япония, Канала США, Германия, Индия

JOGMEC, BP, Chevron Texaco

Нагреватель (теплоноситель-вода)

Северный склон Аляски, США

США, Япония

Conoco Phillips, JOGMEC

Инъекция углекислого газа, ввод ингибитора

Аляска, США

BP, Schlumberger

Бурение с целью изучения свойств газогидрата

Маллик, Канада

Япония, Канада

JOGMEC в составе частного государственного консорциума

Разгерметизация

Огонь во льду (Ignik Sikumi ),

Аляска, США

США, Япония, Норвегия

Conoco Phillips, JOGMEС, университет Бергена (Норвегия)

Инъекция углекислого газа

Совместный проект (Joint Industry Project ) Мексиканский залив, США

Chevron как лидер консорциума

Бурение с целью изучения геологии залегания газогидратов

Вблизи полуострова Ацуми, Япония

JOGMEC, JAPEX, Japan Drilling

Разгерметизация

Источник - аналитический центр по материалам открытых источников

Технологии

Еще одной причиной неосвоенности коммерческой добычи гидратов -отсутствие технология для их выгодной добычи, что провоцирует большие капиталовложения. В зависимости от технологии, встречаются разные барьеры: эксплуатация специального оборудования для введения химических элементов и/или локального нагрева для избегания повторного образования газогидратов и закупоривания скважин; применения технологий, препятствующих добыче песка.

Например, в 2008 году по предварительным оценкам для месторождения Маллик в канадской Арктике указывали на то, что издержки разработки варьируются в пределах 195-230 долл./тыс. куб. м для газогидратов, расположенных над свободным газом, и в пределах 250- 365 долл./тыс. куб. м для газогидратов, расположенных над свободной водой.

Для решения этой проблем необходимо популяризовать коммерческую добычу гидратов среди научных кадров. Организовывать больше научных конференций, конкурсов для усовершенствования старого либо создания нового оборудования, что могло бы обеспечить меньше издержки.

Экологическая опасность

Более того, разработка газогидратных месторождений неизбежно приведет к увеличению объемов выброса природного газа в атмосферу и, как следствие, к усилению парникового эффекта. Метан является мощным парниковым газом и, несмотря на то, что его время жизни в атмосфере меньше, чем у СО₂, потепление, вызванное выбросами в атмосферу больших количеств метана, будет в десятки раз быстрее, чем потепление, вызванное углекислым газом. Кроме этого, если глобальное потепление, парниковый эффект или по другим причинам будет вызван распад хотя бы одного месторождения газогидратов, то это вызовет колоссальный выброс метана в атмосферу. И, словно лавина, от одного залегания до другого, это приведет к глобальным изменения климата на Земле, а последствия этих изменений даже приблизительно предсказать нельзя.

Во избежание этого необходима интеграция данных комплексных анализов разведки, прогнозирование возможных поведения залежей.

Детонация

Еще одной нерешенной задачей для добытчиков становится весьма неприятное свойство газогидратов «детонировать» при самых незначительных сотрясениях. При этом кристаллы быстро проходят фазу трансформации в газообразное состояние, и обретают объем в несколько десятков раз превышающий исходный. Поэтому в сообщениях японских геологов очень аккуратно говорится о перспективе разработки метангидратов - ведь катастрофа буровой платформы Deepwater Horizon, по мнению ряда ученых, включая профессора Калифорнийского университета в Беркли Роберта Би, стала следствием взрыва гигантского пузыря метана, который образовался из потревоженных буровиками донных залежей гидратов.

Добыча нефти и газа

Газогидраты рассматриваются не только со стороны энергетического ресурса, чаще с ними сталкиваются при добычи нефти. И снова мы обратимся к гибели платформы Deepwater Horizon в Мексиканском заливе. Тогда для контроля над вырывающейся нефтью соорудили специальный короб, который планировали поставить над аварийным устьем скважины. Но нефть оказалась весьма газированной, и метан стал образовывать на стенках короба целые наледи газогидратов. Они примерно на 10% легче воды, и когда количество газогидратов стало достаточно большим, они просто стали поднимать короб, что, в общем-то, заранее предсказывалось специалистами.

С той же проблемой столкнулись при добыче традиционного газа. Кроме «природных» газовых гидратов, образование газовых гидратов является большой проблемой в магистральных газопроводах, расположенных в условиях умеренного и холодного климата, поскольку газовые гидраты способны забить газопровод и снизить его пропускную способность. Для того, чтобы этого не происходило, в природный газ добавляют небольшое количество ингибитора и ли же просто используют подогрев.

Эти проблемы решают такими же способами как и при добычи: понижая давления, нагревая, вводя ингибитор.

Заключение

В данной статье были рассмотрены барьеры, стоящие на пути коммерческой добычи газогидратов. Они встречаются уже на этапе разработке газовых месторождений, непосредственно при самой добычи. Кроме того, на данный момент газогидраты являются проблемой при нефте- и газодобычи. На сегодняшний день, впечатляющие запасы газогидратов, экономическая рентабельность требуют накопления информации и уточнений. Специалисты до сих пор находятся в поиске оптимальных решений разработки газигидратных месторождений. Но с развитием технологий стоимость разработки залежей должна снизиться.

Библиографический список:


1. Васильев А., Димитров Л. Оценка пространственного распределения и запасов газогидратов в Черном море // Геология и геофизика. 2002. №7. т. 43.
2. Дядин Ю. А., Гущин А.Л. Газовые гидраты. // Соросовский образовательный журнал, №3, 1998, с. 55–64
3. Макогон Ю.Ф. Природные газовые гидраты: распространение, модели образования, ресурсы. – 70 с.
4. Трофимук А. А., Макогон Ю. Ф., Толкачев М. В., Черский Н. В. Особенности обнаружения разведки и разработки газогидратных залежей -2013 г. [Электронный ресурс] http://vimpelneft.com/fotogalereya/6-komanda-vymlnefti/detail/32-komanda-vympelnefti
5. Химия и Жизнь, 2006, №6, стр. 8.
6. The Day The Earth Nearly Died – 5. 12. 2002 [электронный ресурс] http://www.bbc.co.uk/science/horizon/2002/dayearthdied.shtml

Рецензии:

1.12.2015, 12:12 Мордашев Владимир Михайлович
Рецензия : Статья посвящена широкому кругу проблем, связанных с актуальной задачей освоения газогидратов - перспективного энергетического ресурса. Решение этих проблем потребует, в том числе, анализа и обобщения разнородных данных научных и технологических исследований, носящих зачастую неупорядоченный, хаотический характер. Поэтому рецензент рекомендует авторам в своей дальнейшей работе обратить внимание на статью "Эмпиризм для хаоса", сайт, №24, 2015, с. 124-128. Статья "Проблемы освоения газогидратов" представляет несомненный интерес для широкого круга специалистов, её следует опубликовать.

18.12.2015 2:02 Ответ на рецензию автора Курикова Полина Робертовна :
Ознакомилась со статьей, при дальнейшей разработке темы,решении освещенных проблем, буду пользоваться данными рекомендациями. Благодарю.

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений.

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Алексей Щебетов, РГУ нефти и газа им. И.М.Губкина

Газогидратные месторождения обладают наибольшим потенциалом по сравнению с другими нетрадиционными источниками газа. Сегодня себестоимость газа, добытого из гидратов, несопоставима с аналогичным показателем добычи газа из традиционных газовых месторождений. Однако вполне обоснованно полагать, что в ближайшей перспективе прогресс технологий газодобычи сможет обеспечить экономическую целесообразность разработки месторождений газовых гидратов. На основе анализа геологических условий залегания типовых газогидратных залежей и результатов численного моделирования автором выполнена оценка перспективности добычи газа из гидратов.

Газовые гидраты представляют собой твердые соединения молекул газа и воды, существующие при определенных давлениях и температурах. В одном кубометре природного гидрата содержится до 180 м3 газа и 0,78 м3 воды. Если раньше гидраты изучались с позиции технологических осложнений при добыче и транспорте природного газа, то с момента обнаружения залежей природных газовых гидратов их стали рассматривать как наиболее перспективный источник энергии. В настоящий момент известно более двухсот месторождений газовых гидратов, большая часть которых расположена на морском дне. По последним оценкам, в залежах природных газовых гидратов сосредоточено 10-1000 трлн м3 метана , что соизмеримо с запасами традиционного газа. Поэтому стремление многих стран (особенно стран-импортеров газа: США, Японии, Китая, Тайваня) освоить этот ресурс вполне объяснимо. Но, несмотря на последние успехи геологоразведочного бурения и экспериментальных исследований гидратов в пористых средах, вопрос об экономически рентабельном способе добычи газа из гидратов остается по-прежнему открытым и требует дальнейшего изучения.

Газогидратные месторождения

Самое первое упоминание о больших скоплениях газовых гидратов связано с Мессояхским месторождением, открытым в 1972 г. в Западной Сибири. Вопросами анализа разработки этого месторождения занимались многие исследователи, опубликовано более ста научных статей. Согласно работе в верхней части продуктивного разреза Мессояхского месторождения предполагается существование природных гидратов. Однако следует отметить, что прямые исследования гидратоносности месторождения (отбор керна) не проводились, а те признаки, по которым выявлены гидраты, носят косвенный характер и допускают различную трактовку .

Поэтому к настоящему моменту нет единого мнения о гидратоносности Мессояхского месторождения.

В этом отношении наиболее показательным является пример другого предполагаемого гидратоносного района - северного склона Аляски (США). Долгое время считалось, что данный район имеет значительные запасы газа в гидратном состоянии. Так, утверждалось , что в районе нефтяных месторождений Прудо Бей и Кипарук Ривер имеется шесть гидратонасыщенных пластов с запасами 1,0-1,2 трлн м3. Предположение о гидратоносности строилось на результатах опробования скважин в вероятном интервале залегания гидратов (эти интервалы характеризовались крайне низкими дебитами газа) и интерпретации геофизических материалов.

С целью изучения условий залегания гидратов на Аляске и оценки их ресурсов в конце 2002 г. компания «Анадарко» (Anadarko) совместно с Департаментом энергетики США организовала бурение разведочной скважины Хот Айс № 1 (HOT ICE #1). В начале 2004 г. скважина была закончена на проектной глубине 792 м. Тем не менее, несмотря на ряд косвенных признаков наличия гидратов (данные геофизических исследований и сейсморазведки), а также на благоприятные термобарические условия, гидратов в поднятых кернах обнаружено не было . Это еще раз подтверждает тезис о том, что единственным надежным способом обнаружения гидратных залежей является разведочное бурение с отбором керна.

На данный момент подтверждена гидратоносность лишь двух месторождений природных гидратов, представляющих наибольший интерес с точки зрения промышленного освоения: Маллик - в дельте реки Макензи на северо-западе Канады , и Нанкай - на шельфе Японии.

Месторождение Маллик

Существование природных гидратов подтверждено бурением исследовательской скважины в 1998 г. и трех скважин в 2002 г. На этом месторождении успешно проведены промысловые эксперименты по добыче газа из гидратонасыщенных интервалов. Есть все основания полагать, что оно является характерным типом континентальных гидратных месторождений, которые будут открыты в дальнейшем.

На основе геофизических исследований и изучении кернового материала выявлены три гидратосодержащих пласта (A, B, C) общей мощностью 130 м в интервале 890-1108 м. Зона вечной мерзлоты имеет мощность порядка 610 м, а зона стабильности гидрата (ЗСГ) (т.е. интервал, где термобарические условия соответствуют условиям стабильности гидратов) простирается от 225 до 1100 м. Зона стабильности гидратов определяется по точкам пересечения равновесной кривой образования гидрата пластового газа и кривой изменения температуры разреза (см. рис. 1). Верхняя точка пересечения является верхней границей ЗСГ, а нижняя точка - соответственно нижней границей ЗСГ. Равновесная температура, соответствующая нижней границе зоны стабильности гидратов, составляет 12,2°С .

Пласт А находится в интервале от 892 до 930 м, где отдельно выделяется гидратонасыщенный пропласток песчаника (907-930 м). По данным геофизики, насыщенность гидратом варьирует от 50 до 85%, остальное поровое пространство занято водой. Пористость составляет 32-38%. Верхняя часть пласта А состоит из песчаного алеврита и тонких прослоев песчаника с гидратонасыщенностью 40-75%. Визуальный осмотр поднятых на поверхность кернов выявил, что гидрат в основном занимает межзеренное поровое пространство. Данный интервал является самым холодным: разница между равновесной температурой гидратообразования и пластовой температурой превышает 4°С.

Гидратный пласт В (942-992 м) состоит из нескольких песчаных пропластков толщиной 5-10 м, разделенных тонкими прослоями (0,5-1 м) свободных от гидратов глин. Насыщенность гидратами варьирует в широких пределах от 40 до 80%. Пористость изменяется от 30 до 40%. Широкий предел изменения пористости и гидратонасыщенности объясняется слоистым строением пласта. Гидратный пласт В подстилается водоносным пропластком мощностью 10 м.

Пласт С (1070-1107 м) состоит из двух пропластков с насыщенностью гидратами в пределах 80-90% и находится в условиях, близких к равновесным. Подошва пласта С совпадает с нижней границей зоны стабильности гидратов. Пористость интервала составляет 30-40%.

Ниже зоны стабильности гидратов отмечается переходная зона газ-вода мощностью 1,4 м. После переходной зоны следует водоносный пласт мощностью 15 м.

По результатам лабораторных исследований установлено, что гидрат состоит из метана (98% и более). Изучение кернового материала показало, что пористая среда в отсутствии гидратов имеет высокую проницаемость (от 100 до 1000 мД), а при насыщении гидратами на 80% проницаемость породы падает до 0,01-0,1 мД.

Плотность запасов газа в гидратах около пробуренных разведочных скважин составила 4,15 млрд. м3 на 1 км2, а запасы в целом по месторождению - 110 млрд. м3 .

Месторождение Нанкай

На шельфе Японии уже на протяжении нескольких лет ведутся активные разведочные работы. Первые шесть скважин, пробуренных в период с 1999-2000 гг, доказали наличие трех гидратных пропластков общей мощностью 16 м в интервале 1135-1213 м от поверхности моря (290 м ниже морского дна). Породы представлены в основном песчаниками с пористостью 36% и насыщенностью гидратами порядка 80% .

В 2004 г. были пробурены уже 32 скважины при глубинах моря от 720 до 2033 м . Отдельно следует отметить успешное заканчивание в слабоустойчивых гидратных пластах вертикальной и горизонтальной (с длиной горизонтального ствола 100 м) скважин при глубине моря 991 м . Следующим этапом освоения месторождения Нанкай станет экспериментальная добыча газа из этих скважин в 2007 г. К промышленной разработке месторождения Нанкай намечается приступить в 2017 г.

Суммарный объем гидратов эквивалентен 756 млн м3 газа на 1 км2 площади в районе пробуренных разведочных скважин. В целом по шельфу Японского моря запасы газа в гидратах могут составлять от 4 трлн до 20 трлн м3 .

Гидратные месторождения в России

Основные направления поиска газовых гидратов в России сейчас сосредоточены в Охотском море и на озере Байкал . Однако наибольшие перспективы обнаружения залежей гидратов с промышленными запасами связаны с Восточно-Мессояхским месторождением в Западной Сибири . На основе анализа геолого-геофизической информации сделано предположение о том, что газсалинская пачка находится в благоприятных для гидратообразования условиях. В частности, нижняя граница зоны стабильности газогидратов находится на глубине приблизительно 715 м, т.е. верхняя часть газсалинской пачки (а в некоторых районах и вся пачка) находится в термобарических условиях, благоприятных для существования газогидратов. Опробование скважин результатов не дало, хотя по каротажу данный интервал характеризуется как продуктивный, что можно объяснить снижением проницаемости пород из-за наличия газовых гидратов. В пользу возможного существования гидратов говорит и тот факт, что газсалинская пачка является продуктивной на других рядом расположенных месторождениях. Поэтому, как отмечалось выше, необходимо бурение разведочной скважины с отбором керна. В случае положительных результатов будет открыта газогидратная залежь с запасами ~500 млрд м3.

Анализ возможных технологий разработки газогидратных залежей

Выбор технологии разработки газогидратных залежей зависит от конкретных геолого-физических условий залегания. Сейчас рассматриваются только три основных метода вызова притока газа из гидратного пласта: понижение давления ниже равновесного давления, нагрев гидратосодержащих пород выше равновесной температуры, а также их комбинация (см. рис. 2). Известный метод разложения гидратов с помощью ингибиторов вряд ли окажется приемлемым вследствие высокой стоимости ингибиторов. Другие предлагаемые методы воздействия, в частности электромагнитное, акустическое и закачка углекислого газа в пласт, пока еще мало изучены экспериментально.

Рассмотрим перспективность добычи газа из гидратов на примере задачи притока газа к вертикальной скважине, полностью вскрывшей гидратонасыщенный пласт. Тогда система уравнений, описывающих разложение гидрата в пористой среде, будет иметь вид:

а) закон сохранения массы для газа и воды:

где P - давление, T - температура, S - водонасыщенность, v - гидратонасыщенность, z - коэффициент сверхсжимаемости; r - радиальная координата; t - время; m - пористость, g, w, h - плотности газа, воды и гидрата соотвественно; k(v) - проницаемость пористой среды в присутствии гидратов; fg(S), fw(S) - функции относительных фазовых проницаемостей для газа и воды; g, w - вязкости газа и воды; - массовое содержание газа в гидрате;

б) уравнение сохранения энергии:

где Сe - теплоемкость породы и вмещающих флюидов; cg, cw - теплоемкость газа и воды соответственно; H - теплота фазового перехода гидрата; - дифференциальный адиабатический коэффициент; - коэффициент дросселирования (коэффициент Джоуля-Томсона); e - коэффициент теплопроводности породы и вмещающих флюидов.

В каждой точке пласта должно выполняться условие термодинамического равновесия:

Т = A ln P + B, (3)

где A и B - эмпирические коэффициенты.

Зависимость проницаемости породы от насыщенности гидратов принято представлять в виде степенной зависимости:

k (v) = k0 (1 - v)N, (4)

где k0 - абсолютная проницаемость пористой среды при отсутствии гидратов; N - константа, характеризующая степень ухудшения проницаемости с ростом гидратонасыщенности.

В начальный момент времени однородный и единичной мощности пласт имеет давление Р0, температуру Т0 и насыщенность гидратами v0. Метод понижения давления моделировался заданием на скважине постоянного дебита, а тепловой метод - тепловым источником постоянной мощности. Соответственно при комбинированном методе задавались постоянный расход газа и мощность теплового источника, необходимая для устойчивого разложения гидратов.

При моделировании добычи газа из гидратов рассматриваемыми методами учитывались следующие ограничения. При начальной пластовой температуре 10°С и давлении 5,74 МПа коэффициент Джоуля-Томсона составляет 3-4 градуса на 1 МПа депрессии. Таким образом, при депрессии 3-4 МПа забойная температура может достичь температуры замерзания воды. Как известно, замерзание воды в породе не только снижает проницаемость призабойной зоны, но и приводит к более катастрофическим последствиям - смятию обсадных колон, разрушению коллектора и т.д. Поэтому для метода понижения давления принималось, что за 100 суток работы скважины забойная температура не должна снизиться ниже 0°С. Для теплового метода ограничением является рост температуры на стенке скважины и самого нагревателя. Поэтому при расчетах принималось, что за 100 суток работы скважины забойная температура не должна превысить 110°С. При моделировании комбинированного метода учитывались оба ограничения.

Эффективность методов сравнивалась по максимальному дебиту вертикальной скважины, полностью вскрывшей газогидратный пласт единичной толщины, с учетом упомянутых выше ограничений. Для теплового и комбинированного методов энергетические затраты учитывались путем вычитания из дебита того количества газа, которое требуется для получения необходимой теплоты (в предположении, что теплота генерируется от сжигания части добываемого метана):

Q* = Q - E/q, (5)

где Q - дебит газа на забое, м3/сут.; E - подводимая к забою тепловая энергия, Дж/сут.; q - теплота сгорания метана (33,28.106), Дж/м3.

Расчеты проводились при следующих параметрах: P0 = 5,74 МПа; T0 = 283 К; S = 0,20; m = 0,35; h = 910кг/м3, w = 1000 кг/м3; k0 = 0,1 мкм2; N = 1 (коэффициент в формуле (4)); g = 0,014 мПа.с; w = 1 мПа.с; = 0,134; A = 7,28 К; B = 169,7 К; Сe = 1,48.106 Дж/(м3.К); cg = 2600 Дж/(кг.К), cw = 4200 Дж/(кг.К); H = 0,5 МДж/кг; e = 1,71 Вт/(м.К). Результаты расчетов сведены в табл. 1.

Анализ этих результатов расчетов показывает, что метод понижения давления является пригодным для гидратных пластов, где насыщенность гидратами невелика, а газ или вода не потеряли свою подвижность. Естественно, что при увеличении гидратонасыщенности (а значит, сокращении проницаемости согласно уравнению (4)) эффективность этого метода резко падает. Так, при насыщенности пор гидратами более 80% получить приток из гидратов за счет снижения забойного давления практически невозможно.

Другой недостаток метода снижения давления связан с техногенным образованием гидратов в призабойной зоне вследствие эффекта Джоуля-Томсона. На рис. 3 представлено распределение водо- и гидратонасыщенности, полученное в результате решения задачи притока газа к вертикальной скважине, вскрывшей газогидратный пласт. На этом рисунке отчетливо прослеживается зона незначительного разложения гидрата (I), зона вторичного гидратообразования (II) и зона фильтрации только газа (III), поскольку в этой зоне вся свободная вода перешла в гидрат.

Таким образом, разработка гидратных залежей за счет понижения давления возможна только при закачке ингибиторов в призабойную зону, что значительно увеличит себестоимость добываемого газа.

Тепловой метод разработки газогидратных месторождений пригоден для пластов, имеющих высокое содержание гидратов в порах. Однако, как показывают результаты расчетов, тепловое воздействие через забой скважины малоэффективно. Это связано с тем, что процесс разложения гидратов сопровождается поглощением тепла с высокой удельной энтальпией 0,5 МДж/кг (для примера: теплота плавления льда составляет 0,34 МДж/кг). По мере удаления фронта разложения от забоя скважины все больше энергии тратится на прогрев вмещающих пород и кровли пласта, поэтому зона теплового воздействия на гидраты через забой скважины исчисляется первыми метрами. На рис. 4 представлена динамика растепления полностью насыщенного гидратами пласта. Из этого рисунка видно, что за 100 суток непрерывного прогрева разложение гидратов произойдет в радиусе всего 3,5 метра от стенки скважины.

Наибольшие перспективы имеет комбинированный метод, состоящий в одновременном снижении давления и подводе тепла к скважине. Причем основное разложение гидрата происходит за счет снижения давления, а подводимая к забою теплота позволяет сократить зону вторичного гидратообразования, что положительно сказывается на дебите. Недостатком комбинированного метода (как и теплового) является большое количество попутно добываемой воды (см. табл. 1).

Заключение

Таким образом, при современном уровне нефтегазовых технологий трудно ожидать, что себестоимость добываемого газа из гидратов будет сопоставима с аналогичным показателем традиционных газовых месторождений. Это обусловлено большими проблемами и сложностями, возникающими перед разработчиками и исследователями. Однако уже сейчас газовые гидраты можно сравнить с другим нетрадиционным источником газа - метаном угольных пластов. Еще двадцать лет назад считалось, что добывать метан из угольных бассейнов технически сложно и невыгодно. Теперь только в США ежегодно добывается порядка 45 млрд м3 из более 10 тыс. скважин, что достигнуто за счет развития нефтегазовой науки и создания новейших технологий газодобычи. По аналогии с угольным метаном можно сделать вывод (см. табл. 2), что добыча газа из гидратов может оказаться вполне рентабельной и начнется в ближайшей перспективе.

Литература

1. Lerche Ian. Estimates of Worldwide Gas Hydrate Resources. Paper OTC 13036, presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3May 2001.

2. Makogon, Y.F., Holditch, S.A., Makogon T.Y. Russian field illustrates gashydrate production. Oil&Gas Journal, Feb.7, 2005, vol. 103.5, pp. 43-47.

3. Гинсбург Г.Д., Новожилов А.А. О гидратах в недрах Мессояхского месторождения.// «Газовая промышленность», 1997 г., №2.

4. Collett, T.S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska: AAPG Bull., Vol. 77, No. 5, 1993, pp. 793-812.

5. Ali G. Kadaster, Keith K. Millheim, Tommy W. Thompson. The planning and drilling of Hot Ice # 1 - Gas Hydrate Exploration Well in the Alaskan Arctic. Paper SPE/IADC 92764 presented at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands, 23-25 February 2005.

6. Dallimore, S., Collett, T., Uchida, T. Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin 544, 1999, p. 403.

7. Takahashi, H., Yonezawa, T., Takedomi, Y. Exploration for Natural Hydrate in Nankai-Trough Wells Offshore Japan. Paper presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3 May 2001. OTC 13040.

8. Takahashi, H., Tsuji, Y. Japan explores for hydrates in the Nankai Trough. Oil&Gas Journal, Sept.5, 2005, vol. 103.33, pp. 48-53.

9. Takahashi, H., Tsuji, Y. Japan drills, logs gas hydrate wells in the Nankai Trough. Oil&Gas Journal, Sept.12, 2005, vol. 103.34, pp. 37-42,

10. Соловьев В.А. Газогидратоносность недр Мирового Океана// «Газовая промышленность», 2001 г., №12.

11. Агалаков С.Е. Газовые гидраты в Туронских отложениях на севере Западной Сибири// «Геология нефти и газа», 1997г., №3.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама