THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными.

Возьмем закрытый сосуд с газом и будем нагревать его (рис. 4.2). Температуру газа будем определять с помощью термометра, а давление - манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 °С обозначим а затем будем постепенно нагревать наружный сосуд и записывать значения для газа. Оказывается, что график зависимости от построенный на основании такого опыта, имеет вид прямой линии (рис. 4.3, а). Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа.

Из подобия треугольников на рис. 4.3, а можно записать:

Если обозначить постоянную через у, то получим

По смыслу коэффициент пропорциональности у в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объеме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 °С, изменяется его давление при нагревании на

Выведем единицу температурного коэффициента у в СИ:

Повторяя описанный опыт для различных газов при различных массах, можно установить, что в пределах ошибок опытов точка А для всех графиков получается в одном и том же месте (рис. 4.3, б). При этом длина отрезка ОА получается равной Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна а температурный коэффициент давления Отметим, что точное значение у равно При решении задач обычно пользуются приближенным значением у, равным

Из опытов значение у впервые было определено французским физиком Ж. Шарлем, который в 1787 г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах у зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ.

Количество воздуха в баллонах зависит от объема баллона, давления воздуха и его температуры. Соотношение между давлением воздуха и его объемом при неизменной температуре определяется зависимостью


где р1 и р2 - начальное и конечное абсолютное давление, кгс/см²;

V1 и V2 - начальный и конечный объем воздуха, л. Соотношение между давлением воздуха и его температурой при неизменном объеме определяется зависимостью


где t1 и t2 - начальная и конечная температура воздуха.

Пользуясь этими зависимостями, можно решать различные задачи, с которыми приходится сталкиваться в процессе зарядки и эксплуатации воздушно-дыхательных аппаратов.

Пример 4.1. Общая емкость баллонов аппарата 14 л, избыточное давление воздуха в них (по манометру) 200 кгс/см². Определить объем свободного воздуха, т. е. объем, приведенный к нормальным (атмосферным) условиям.

Решение. Начальное абсолютное давление атмосферного воздуха p1 = 1 кгс/см². Конечное абсолютное давление сжатого воздуха р2 = 200 + 1= 201 кгс/см². Конечный объем сжатого воздуха V 2=14 л. Объем свободного воздуха в баллонах по (4.1)


Пример 4.2. Из транспортного баллона емкостью 40 л с давлением 200 кгс/см² (абсолютное давление 201 кгс/см²) перепустили воздух в баллоны аппарата общей емкостью 14 л и с остаточным давлением 30 кгс/см² (абсолютное давление 31 кгс/см²). Определить давление воздуха в баллонах после перепуска воздуха.

Решение. Суммарный объем свободного воздуха в системе транспортного и аппаратных баллонов по (4.1)


Суммарный объем сжатого воздуха в системе баллонов
Абсолютное давление в системе баллонов после перепуска воздуха
избыточное давление = 156 кгс/см².

Этот пример можно решить и в одно действие, вычислив абсолютное давление по формуле


Пример 4.3. При измерении давления воздуха в баллонах аппарата в помещении с температурой +17° С манометр показал 200 кгс/см². Аппарат вынесли наружу, где через несколько часов во время рабочей проверки было обнаружено падение давления по манометру до 179 кгс/см². Температура наружного воздуха -13° С. Возникло подозрение в утечке воздуха из баллонов. Проверить расчетом обоснованность этого подозрения.

Решение. Начальное абсолютное давление воздуха в баллонах p1 = 200 + 1 = 201 кгс/см², конечное абсолютное давление р2 = 179 + 1 = 180 кгс/см². Начальная температура воздуха в баллонах t1 = + 17° С, конечная t2 = - 13° С. Расчетное конечное абсолютное давление воздуха в баллонах по (4.2)


Подозрения лишены оснований, так как фактическое и расчетное давление равны.

Пример 4.4. Пловец-подводник под водой расходует 30 л/мин воздуха, сжатого до давления глубины погружения 40 м. Определить расход свободного воздуха, т. е. сделать пересчет на атмосферное давление.

Решение. Начальное (атмосферное) абсолютное давление воздуха p1 = l кгс/см². Конечное абсолютное давление сжатого воздуха по (1.2) р2 =1 + 0,1*40 = 5 кгс/см². Конечный расход сжатого воздуха V2 = 30 л/мин. Расход свободного воздуха по (4.1)

Поскольку при изобарическом процессе P постоянно, то после сокращения на P формула принимает вид

V 1 /T 1 =V 2 /T 2 ,

V 1 /V 2 =T 1 /T 2 .

Формула является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объём газа прямо пропорционален его абсолютной температуре.

Изотермический процесс

Процесс в газе, происходящий при постоянной температуре, называется изотермическим. Изотермический процесс в газе был изучен английским ученым Р.Бойлем и французским ученым Э. Мариотом. Установленная ими опытным путем связь получается непосредственно из формулы путем сокращения на T:

p 1 V 1 =p 2 V 2 ,

p 1 /p 2 =V 1 /V 2.

Формула является математическим выражением закона Бойля - Мариота : при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объёма газа на соответствующее давление есть величина постоянная:

График зависимости p от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рисунке 3 изображены изотермы для одной и той же массы газа, но при разных температурах Т. При изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

ρ 1 /ρ 2= p 1 /p 2

Зависимость давления газа от температуры при постоянном объеме

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными. Возьмем закрытый сосуд с газом и, будем нагревать его (рисунок 4). Температуру газа t будем определять с помощью термометра, а давление манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 0 С обозначим р 0 , а затем будем постепенно нагревать наружный сосуд и записывать значения р и t для газа.

Оказывается, что график зависимости р и t, построенный на основании такого опыта, имеет вид прямой линии (рисунок 5).

Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа. Из подобия треугольников на рисунке 5, а можно записать:

P 0 /OA=Δp/Δt,

l/OA=Δp/(p 0 Δt).

Если обозначить постоянною l/ОА через α, то получим

α = Δp//(p 0 Δt),

Δp= α p 0 Δt.

По смыслу коэффициент пропорциональности α в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина γ, характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объёме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 0 С, изменяется при нагревании на 1 0 С. Выведем единицу температурного коэффициента α в СИ:

α =l ΠA/(l ΠA*l 0 C)=l 0 C -1

При этом длина отрезка ОА получается равной 273 0 С. Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна – 273 0 С, а температурный коэффициент давления α =1/ОА=(1/273) 0 С -1 .




При решении задач обычно пользуются приближенным значением α равным α =1/ОА=(1/273) 0 С -1 . Из опытов значение α впервые было определено французским физиком Ж. Шарлем, который в 1787г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен (1/273,15) 0 С -1 . Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах α зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ. Выясним, как можно определить давление любого газа р, при произвольной температуре t.

Подставив эти значения Δр и Δt в формулу, получим

p 1 -p 0 =αp 0 t,

p 1 =p 0 (1+αt).

Поскольку α~273 0 С, при решении задач формулу можно использовать в следующем виде:

p 1 =p 0

К любому изопроцессу применим объединенный газовый закон с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объём V, формула после сокращения на V принимает вид

Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • ниже -100°C и выше температуры диссоциации / разложения
  • выше 90 бар
  • глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

  • в СИ R= 8,3144 Дж/(моль*К) - это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
  • в СГС R= 8,3144*10 7 эрг/(моль*К) - это основная (но не единственная) научная система измерений в мире
  • m -масса газа в (кг)
  • M -молярная масса газа кг/моль (таким образом (m/M) - число молей газа)
  • P -давление газа в (Па)
  • Т -температура газа в (°K)
  • V -объем газа в м 3

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) - что верно для большинства газов в указанных выше .

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

V 1 и V 2 , при температурах, соответственно, T 1 и T 2 и, пусть T 1 < T 2 . Тогда мы знаем, что:

Естественно, V 1 < V 2

  • показатели объемного счетчика газа тем "весомее", чем ниже температура
  • выгодно поставлять "теплый" газ
  • выгодно покупать "холодный" газ

Как с этим бороться? Необходима хотя бы простая температурная компенсация, т.е в считающее устройство должна подаваться информация с дополнительного датчика температуры.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется скорость газа.

Пусть счетчик () в точке доставки дает объемные накопленные расходы V 1 и V 2 , при давлениях, соответственно, P 1 и P 2 и, пусть P 1 < P 2 . Тогда мы знаем, что:

Естественно, V 1 >V 2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем "весомее", чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

В заключение, хотелось бы отметить, что, теоретически, каждый газовый счетчик должен иметь и температурную компенсацию и компенсацию по давлению. Практически же......

Введение

Состояние идеального газа полностью описывается измеряемыми величинами: давлением, температурой, объемом. Отношение между этими тремя величинами определяется основным газовым законом:

Цель работы

Проверка закона Бойля-Мариотта.

Решаемые задачи

    Измерение давления воздуха в шприце при изменении объема учитывая, что температура газа постояна.

Экспериментальная установка

Приборы и принадлежности

    Манометр

    Ручной вакуумный насос

В данном эксперименте закон Бойля – Мариотта подтверждается с помощью установки показанной на рисунке 1. Объем воздуха в шприце определяется следующим образом:

где p 0 атмосферное давление, аp– давление, измеренное при помощи манометра.

Порядок выполнения работы

    Установите поршень шприца на отметке 50 мл.

    Плотно надеть свободный конец соединительного шланга ручного вакуумного насоса на выходной патрубок шприца.

    Выдвигая поршень, увеличивайте объем с шагом 5 мл, фиксируйте показания маномета по черной шкале.

    Чтобы определить давление под поршнем, надо из атмосферного давления вычесть показания монометра, выраженного в паскалях. Атмосферное давление равно приблизительно 1 бар, что соответствует 100 000 Па.

    Для обработки результатов измерений следует учитывать наличие воздуха в соединительном шланге. Для этого измерьте расчитайте объем соединительного шланга, измерив длину шланга рулеткой, а диаметр шланга штангенциркулем, учитывая, что толщина стенок составляет 1,5 мм.

    Постройте график измеренной зависимости объема воздуха от давления.

    Рассчитайте зависимость объема от давления при постоянной температуре по закону Бойля-Мариотта и постройте график.

    Сравните теоретические и экспериментальные зависимости.

2133. Зависимость давления газа от температуры при постоянном объеме (закон шарля)

Введение

Рассмотрим зависимость давления газа от температуры при условии неизменного объема определенной массы газа. Эти исследования были впервые произведены в 1787 г. Жаком Александром Сезаром Шарлем (1746-1823). Газ нагревался в большой колбе, соединенной с ртутным манометром в виде узкой изогнутой трубки. Пренебрегая ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, измеряли температуру газа по термометру Т , а соответствующее давлениер - по манометру. Наполнив сосуд тающим льдом, определяли давлениер о , и соответствующую температуруТ о . Было установлено, что если при 0  С давлениер о , то при нагревании на 1  С приращение давления будет вр о . Величинаимеет одно и то же значение (точнее, почти одно и тоже) для всех газов, а именно 1/273  C -1 . Величинуназывают температурным коэффициентом давления.

Закон Шарля позволяет рассчитать давление газа при любой температуре, если известно его давление при температуре 0  C. Пусть давление данной массы газа при 0  Cв данном объемеp o , а давление того же газа при температуреt p . Температура меняется наt , а давления изменяется нар о t , тогда давлениер равно:

При очень низких температурах, когда газ приближается к состоянию сжижения, а также в случае сильно сжатых газов закон Шарля неприменим. Совпадение коэффициентов и, входящих в закон Шарля и закон Гей-Люссака, не случайно. Так как газы подчиняются закону Бойля - Мариотта при постоянной температуре, тоидолжны быть равны между собой.

Подставим значение температурного коэффициента давления в формулу температурной зависимости давления:

Величину (273+ t ) можно рассматривать как значение температуры, отсчитанное по новой температурной шкале, единица которой такая же, как и у шкалы Цельсия, а за нуль принята точка, лежащая на 273  ниже точки, принятой за нуль шкалы Цельсия, т. е. точки таяния льда. Нуль этой новой шкалы называют абсолютным нулем. Эту новую шкалу называют термодинамической шкалой температур, гдеT t +273 .

Тогда, при постоянном объеме справедлив закон Шарля:

Цель работы

Проверка закона Шарля

Решаемые задачи

    Определение зависимости давления газа от температуры при постоянном объеме

    Определение абсолютной шкалы температур путем экстраполяции в сторону низких температур

Техника безопасности

    Внимание: в работе используется стекло.

    Будьте предельно аккуратны при работе с газовым термометром; стеклянным сосудом и мерным стаканом.

    Будьте предельно внимательны при работе с горячей водой.

Экспериментальная установка

Приборы и принадлежности

    Газовый термометр

    Мобильный CASSY Lab

    Термопара

    Электрическая нагревательная плитка

    Стеклянный мерный стакан

    Стеклянный сосуд

    Ручной вакуумный насос

При откачке воздуха при комнатной температуре с помощью ручного насоса, создается давление на столб воздуха р0+р, где р 0 – внешние давление. Капля ртути также оказывает давление на столб воздуха:

В данном эксперименте этот закон подтверждается с помощью газового термометра. Термометр помещают в воду с температурой около 90°С и эта система постепенно охлаждается. Откачивая воздух из газового термометра с помощью ручного вакуумного насоса, поддерживают постоянный объём воздуха во время охлаждения.

Порядок выполнения работы

    Откройте заглушку газового термометра, подключите к термометру ручной вакуумный насос.

    Поверните осторожно термометр как показано слева на рис. 2 и откачайте воздух из него с помощью насоса так, чтобы капелька ртути оказалась в точке a) (см. рис.2).

    После того как капелька ртути собралась в точке a)поверните термометр отверстием наверх и спустите нагнетенный воздух ручкойb) на насосе (см. рис.2) осторожно, чтобы ртуть не разделилась на несколько капелек.

    Нагреть воду в стеклянном сосуде на плитке до 90°С.

    Налить горячую воду в стеклянный сосуд.

    Поместить в сосуд газовый термометр, закрепив его на штативе.

    Поместить термопару в воду, постепенно эта система охлаждается. Откачивая воздух из газового термометра с помощью ручного вакуумного наноса, поддерживаете постоянный объём столба воздуха в течении всего процесса охлаждения.

    Фиксируйте показание манометра р и температуруТ .

    Постройте зависимость полного давления газаp 0 +p +p Hg от температуры в о С.

    Продолжите график до пересечения с осью абсцисс. Определите температуру пересечения, объясните полученные результаты.

    По тангенсу угла наклона определите температурный коэффициент давления.

    Рассчитайте зависимость давления от температуры при постоянном объеме по закону Шарля и постройте график. Сравните теоретические и экспериментальные зависимости.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама