THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

>>Физика: Силовые линии электрического поля. Напряженность поля заряженного шара

Электрическое поле не действует на органы чувств . Его мы не видим.
Однако мы можем получить некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (рис.14.9 , слева). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают по направлению с векторами напряженности. Эти линии называют силовыми линиями электрического поля или линиями напряженности (рис.14.9 , справа).

Направление силовых линий позволяет определить направление вектора напряженности в различных точках поля, а густота (число линий на единицу площади) силовых линий показывает, где напряженность поля больше. Так, на рисунках 14.10-14.13 густота силовых линий в точках А больше, чем в точках В . Очевидно, .
Не следует думать, что линии напряженности существуют в действительности вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей . Линии напряженности помогают лишь наглядно представить распределение поля в пространстве. Они не более реальны, чем меридианы и параллели на земном шаре.
Однако силовые линии можно сделать видимыми. Если продолговатые кристаллики изолятора (например, хинина) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики выстроятся в цепочки вдоль линий напряженности.
На рисунках приведены примеры линий напряженности: положительно заряженного шарика (см. рис.14.10 ); двух разноименно заряженных шариков (см. рис.14.11 ); двух одноименно заряженных шариков (см. рис.14.12 ); двух пластин, заряды которых равны по модулю и противоположны по знаку (см. рис.14.13 ). Последний пример особенно На рисунке 14.13 видно, что в пространстве между пластинами ближе к середине силовые линии параллельны: электрическое поле здесь одинаково во всех точках.

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным . В ограниченной области пространства электрическое поле можно считать приближенно однородным, если напряженность поля внутри этой области меняется незначительно.
Однородное электрическое поле изображается параллельными линиями, расположенными на равных расстояниях друг от друга.
Силовые линии электрического поля не замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии непрерывны и не пересекаются, так как пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке.
Поле заряженного шара. Рассмотрим теперь вопрос о электрическом поле заряженного проводящего шара радиусом R . Заряд q равномерно распределен по поверхности шара. Силовые линии электрического поля, как вытекает из соображений симметрии, направлены вдоль продолжений радиусов шара (рис.14.14, а ).

Обратите внимание! Силовые линии вне шара распределены в пространстве точно так же, как и силовые линии точечного заряда (рис.14.14, б ). Если совпадают картины силовых линий, то можно ожидать, что совпадают и напряженности полей. Поэтому на расстоянии r>R от центра шара напряженность поля определяется той же формулой (14.9), что и напряженность поля точечного заряда, помещенного в центре сферы:

Внутри проводящего шара ( r) напряженность поля равна нулю . В этом мы скоро убедимся. На рисунке 14.14, в показана зависимость напряженности электрического поля заряженного проводящего шара от расстояния до его центра.
Картина силовых линий наглядно показывает, как направлена напряженность электрического поля в различных точках пространства. По изменению густоты линий можно судить об изменении модуля напряженности поля при переходе от точки к точке.

???
1. Что называют силовыми линиями электрического поля?
2. Во всех ли случаях траектория заряженной частицы совпадает с силовой линией?
3. Могут ли силовые линии пересекаться?
4. Чему равна напряженность поля заряженного проводящего шара?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Мы получим некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (рис. 102). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой

точке, через которую они проходят, совпадают с вектором напряженности. Эти линии называют силовыми линиями электрического поля или линиями напряженности (рис. 103).

Не следует думать, что линии напряженности - это существующие в действительности образования вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Они лишь помогают наглядно представить распределение поля в пространстве и не более реальны, чем меридианы и параллели на земном шаре.

Однако силовые линии можно сделать «видимыми». Если продолговатые кристаллики изолятора (например, хинина лекарства от малярии) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики «выстроятся» в цепочки вдоль линий напряженности.

На рисунках приведены примеры линий напряженности: положительно заряженного шарика (рис. 104); двух разноименно заряженных шариков (рис. 105); двух одноименно заряженных шариков (рис. 106); двух пластин, заряды которых равны по модулю и противоположны по знаку (рис. 107). Последний пример особенно важен. На рисунке 107 видно, что в пространстве между пластинами вдали от краев пластин силовые линии параллельны: электрическое поле здесь одинаково во всех точках.

Электрическое поле,

напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Силовые линии электрического поля не замкнуты; они начинаются на положительных зарядах и оканчиваются на отрицательных. Линии непрерывны и не пересекаются, так как их пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке. Так как силовые линии начинаются или оканчиваются на заряженных телах, а затем расходятся в разные стороны (рис. 104), то густота линий больше вблизи заряженных тел. где напряженность поля также больше.

I. В чем состоит отличие теории близкодействия от теории действия на расстоянии? 2. Перечислите основные свойства электростатического поля.

3. Что называют напряженностью электрического поля? 4. Чему равна напряженность поля точечного заряда? 5. Сформулируйте принцип суперпозиции. 6. Что называют силовыми линиями электрического поля?

7. Нарисуйте Силовые линии однородного электрического поля.

Различают поля скалярные и векторные (в нашем случае векторным полем будет электрическое). Соответственно, они моделируются скалярными или векторными функциями координат, а также временем.

Скалярное поле описывается функцией вида φ. Такие поля можно наглядно отобразить с помощью поверхностей одинакового уровня: φ (x, y, z) = c, c = const.

Определим вектор, который направлен в сторону максимального роста функции φ.

Абсолютное значение этого вектора определяет скорость изменения функции φ.

Очевидно, что скалярное поле порождает векторное поле.

Такое электрическое поле называют потенциальным, а функция φ называется потенциалом. Поверхности одинакового уровня называют эквипотенциальными поверхностями. Для примера рассмотрим электрическое поле.

Для наглядного отображения полей строят так называемые силовые линии электрического поля. Еще их называют векторными линиями. Это линии, касательная к которым в точке указывает направление электрического поля. Количество линий, которые проходят через единичную поверхность, пропорционально абсолютному значению вектора.

Введем понятие векторного дифференциала вдоль некоторой линии l. Этот вектор направлен по касательной к линии l и по абсолютному значению равен дифференциалу dl.

Пусть задано некоторое электрическое поле, которое нужно представить как силовые линии поля. Другими словами, определим коэффициент растяжения (сжатия) k вектора, чтобы он совпадал с дифференциалом. Приравнивая компоненты дифференциала и вектора, получим систему уравнений. После интегрирования можно построить уравнение силовых линий.

В векторном анализе есть операции, которые дают информацию о том, какие силовые линии электрического поля имеют место в конкретном случае. Введем понятие «поток вектора» на поверхности S. Формальное определение потока Ф имеет следующий вид: величина, рассматривается как произведение обычного дифференциала ds на орт нормали к поверхности s. Орт выбирается так, чтобы он определял внешнюю нормаль поверхности.

Можно провести аналогию между понятием потока поля и потока вещества: вещество за единицу времени проходит через поверхность, которая в свою очередь перпендикулярна направлению потока поля. Если силовые линии выходят из поверхности S наружу, тогда поток является положительным, а если не выходят - отрицательным. В общем случае поток можно оценить числом силовых линий, что выходят из поверхности. С другой стороны, величина потока пропорциональна числу силовых линий, пронизывающих элемент поверхности.

Дивергенция векторной функции рассчитывается в точке, околышем которой является объем ΔV. S - поверхность, охватывающая объем ΔV. Операция дивергенции позволяет характеризовать точки пространства на наличие в нем источников поля. При сжатии поверхности S в точку P силовые линии электрического поля, пронизывающие поверхность, останутся в том же количестве. Если точка пространства не является источником поля (утечкой или стоком), то при сжатии поверхности в эту точку сумма силовых линий, начиная с некоторого момента, равняется нулю (количество линий, входящих в поверхность S равно количеству линий, исходящих из этой поверхности).

Интеграл по замкнутому контуру L в определении операции ротора называется циркуляцией электричества по контуру L. Операция ротора характеризует поле в точке пространства. Направление ротора определяет величину замкнутого потока поля вокруг данной точки (ротор характеризирует вихрь поля) и его направление. Основываясь на определение ротора, путем несложных преобразований можно рассчитать проекции вектора электричества в декартовой системе координат, а также силовые линии электрического поля.

Г РАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ПОЛЕЙ

Электрическое поле можно описать, указав для каждой точки величину и направление вектора . Совокупность этих векторов полностью определит электрическое поле. Но если нарисовать вектора во многих точках поля, то они будут накладываться и пересекаться. Принято электрическое поле наглядно изображать с помощью сети линий, которые позволяют определить величину и направление напряженности поля в каждой точке (Рис.13).

Направление этих линий в каждой точке совпадает с направлением поля, т.е. касательная к таким линиям в каждой точке поля совпадает по направлению с вектором напряженности электрического поля в этой точке. Такие линии называются линиями напряженности электростатического поля или силовыми линиями электростатического поля .

Силовые линии электростатического поля начинаются на положительных электрических зарядах и кончаются на отрицательных электрических зарядах. Они могут уходить в бесконечность от положительного заряда или приходить из бесконечности к отрицательному заряду (линии 1 и 2 см. рис.13).

Силовые линии полезны не только тем, что наглядно демонстрируют направление поля, но и тем, что посредством их можно охарактеризовать величину поля в любой области пространства. Для этого плотность силовых линий численно должна быть равна величине напряженности электростатического поля.

Если поле изображено параллельными силовыми линиями, расположенными на одинаковых расстояниях друг от друга, то это значит, что вектор напряженности поля во всех точках имеет одинаковое направление. Модуль вектора напряженности поля во всех точках имеет одинаковые значения. Такое поле называют однородным электрическим полем. Выберем площадку перпендикулярную линиям напряженности столь малую, чтобы в области этой площадки поле было однородным (Рис.14).

Вектор – по определению перпендикулярен площадке, т.е. параллелен силовым линиям, а, следовательно, и . Длина вектора численно равна площади . Число силовых линий, пересекающих эту площадку, должно удовлетворять условию

Число силовых линий, проходящих через единицу площади поверхности, перпендикулярной силовым линиям, должно равняться модулю вектора напряженности.

Рассмотрим площадку , не перпендикулярную силовым линиям (на рис.14 показана штриховыми линиями). Чтобы ее пересекало такое же число силовых линий как и площадку , должно выполняться условие:, тогда . (4.2).

9.4. Силовые линии электростатического поля

Для наглядного графического представления поля удобно использовать силовые линии - направленные линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля (рис. 153).

Согласно определению силовые линии электрического поля обладают рядом общих свойств (сравните со свойствами линий тока жидкости):

  1. Силовые линии не пересекаются (в противном случае, в точке пересечения можно построить две касательных, то есть в одной точке, напряженность поля имеет два значения, что абсурдно).
  2. Силовые линии не имеют изломов (в точке излома опять можно построить две касательных).
  3. Силовые линии электростатического поля начинаются и заканчиваются на зарядах.

Так напряженность поля определена в каждой пространственной точке, то силовую линию можно провести через любую пространственную точку. Поэтому число силовых линий бесконечно велико. Число линий, которые используются для изображения поля, чаще всего определяется художественным вкусом физика-художника. В некоторых учебных пособиях рекомендуется строить картину силовых линий так, чтобы их густота была больше там, где напряженность поля больше. Это требование не является строгим, и не всегда выполнимым, поэтому силовые линии рисуют, удовлетворяя сформулированным свойствам 1-3.

Очень просто построить силовые линии поля создаваемого точечным зарядом. В этом случае силовые линии представляют собой набор прямых, выходящих (для положительного), или входящих (для отрицательных) в точку расположения заряда (рис. 154). Такие семейства силовых линий полей точечных зарядов демонстрируют, что заряды являются источниками поля, по аналогии с источниками и стоками поля скоростей жидкости. Доказательство того, что силовые линии не могут начинаться или заканчиваться в тех точках, где заряды отсутствуют, мы проведем позднее.

Картину силовых линий реальных полей можно воспроизвести экспериментально.

В невысокий сосуд следует влить небольшой слой касторового масла и всыпать в него небольшую порцию манной крупы. Если масло с крупой поместить в электростатическое поле, то крупинки манной крупы (они имеют слега вытянутую форму) поворачиваются по направлению напряженности электрического поля и выстраиваются приблизительно вдоль силовых линий, по прошествии нескольких десятков секунд в чашке вырисовывается картина силовых линий электрического поля. Некоторые такие «картинки» представлены на фотографиях. Также можно провести теоретический расчет и построение силовых линий. Правда, эти расчеты требуют громадного числа вычислений, поэтому реально (и без особого труда) проводятся с использованием компьютера, чаще всего такие построения выполняются в некоторой плоскости.

При разработке алгоритмов расчета картины силовых линий встречается ряд проблем, требующих своего разрешения. Первая такая проблема - расчет вектора поля. В случае электростатических полей, создаваемых заданным распределением зарядов, эта проблема решается с помощью закона Кулона и принципа суперпозиции. Вторая проблема - метод построения отдельной линии. Идея простейшего алгоритма, решающего данную задачу, достаточна очевидна. На малом участке каждая линия практически совпадает со своей касательной, поэтому следует построить множество отрезков касательных к силовым линиям, то есть отрезков малой длины l , направление которых совпадает с направлением поля в данной точке. Для этого необходимо, прежде всего, рассчитать компоненты вектора напряженности в заданной точке E x , E y и модуль этого вектора \(~E = \sqrt{E^2_x + E^2_y}\) . Затем можно построить отрезок малой длины, направление которого совпадает с направлением вектора напряженности поля. Его проекции на оси координат вычисляются по формулам, которые следуют из рис. 155\[~\Delta x = l \frac{E_x}{E} ; \Delta y = l \frac{E_y}{E}\] . Затем следует повторить процедуру, начиная с конца построенного отрезка. Конечно, при реализации такого алгоритма встречаются и другие проблемы, носящие скорее технический характер.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама