THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Согласно свойству сравнений №15, числа одного и того же класса по модулю m имеют с модулем m один и тот же НОД. Особенно важны классы, для которых он равен 1.

Взяв от каждого из таких классов по одному числу, получим приведенную систему вычетов по модулю m . Обычно ее выделяют из системы наименьших неотрицательных вычетов по модулю m .

Приведенная система наименьших неотрицательных вычетов по модулю m обозначается U m .

Количество чисел в приведенной системе вычетов по модулю m , очевидно, равно φ(m ).

Пример :

Приведенная система вычетов по модулю 15 есть {1; 2; 4; 7; 8; 11; 13; 14}. Заметим, что φ(15)=(5–1)∙(3–1)= 8 и действительно, в приведенной системе вычетов по модулю 15 ровно 8 элементов.

Утверждение 1

Любые φ(m ) чисел, попарно несравнимых по модулю m и взаимно простых с m , образуют приведенную систему вычетов.

(Доказательство очевидно как в утверждении 1 пункт 2)

Утверждение 2

Если (a , m ) = 1, x пробегает приведенную систему вычетов по модулю m , то ax тоже пробегает приведенную систему вычетов по модулю m . (Доказательство очевидно как в утверждении 2 пункт 2).

Обратный элемент.

Говорят, что элемент b называется обратным к a по модулю m , если a∙b ≡1(mod m ), и пишут b a –1 (mod m ).

Вообще, классическая теория чисел не нуждается в таком понятии как обратный элемент, в чем можно убедиться, ознакомившись, например, с . Однако криптология использует системы вычетов как в теоретико-числовом, так и в алгебраическом аспекте, а потому, для удобства изложения алгебраических основ криптологии, мы вводим понятие обратного элемента.

Возникает вопрос – для всех ли элементов по данному модулю m существует обратный (по умножению), и если для каких-то элементов обратный существует, как его найти?

Для ответа на этот вопрос воспользуемся расширенным алгоритмом Евклида. Рассмотрим сначала взаимно простые число a и модуль m . Тогда, очевидно, (a ,m )=1. Расширенный алгоритм Евклида позволяет получить числа x и y , такие, что ax+my= (a ,m ), или, что то же самое, ax+my =1. Из последнего выражения получаем сравнение ax+my ≡1(mod m ). Поскольку my ≡0(mod m ), то ax ≡1(mod m ), а значит полученное с помощью расширенного алгоритма Евклида число x как раз и есть искомый обратный элемент к числу a по модулю m .



Пример.

a =5, m =7. Требуется найти a -1 mod m .

Воспользуемся расширенным алгоритмом Евклида.

Обратный ход:

1=5–2∙2=5–(7–5∙1)∙2=5∙3–7∙2.

x =3, y =–2.

5 -1 ≡3(mod 7)

Проверка: 5∙3=15. 15≡1(mod 7).

Действительно, 3 является обратным элементом к 5 по модулю 7.

Итак, конструктивным образом убедились в том, что для чисел, взаимно простых с модулем, существует обратный по этому модулю. А существуют ли обратные элементы для чисел, не являющихся с модулем взаимно простыми?

Пусть (a ,m )=d ≠1. Тогда a и m представимы в виде a =d a 1 , m =d m 1 . Допустим, что для a существует обратный элемент по модулю m, то есть b : a b ≡1(modm ). Тогда a b= m k +1. Или, что то же самое, d a 1 ∙b= d m 1 ∙k +1. Но тогда по теореме 2 из §1 п.1, в силу того, что и левая часть данного уравнения, и первое слагаемое в правой части делятся на d , то d \1, а это не так, поскольку d ≠1. Пришли к противоречию, следовательно предположение о существовании обратного элемента неверно.

Итак, мы только что доказали

Теорему обратимости

a -1 (mod m ) (a , m ) = 1.

Суммируя все рассуждения этого пункта, можем сказать, что обратимыми являются только взаимно простые с модулем числа, и найти обратные для них можно с помощью расширенного алгоритма Евклида.

Согласно свойству сравнений №15, числа одного и того же класса по модулю m имеют с модулем m один и тот же НОД. Особенно важны классы, для которых он равен 1.

Взяв от каждого из таких классов по одному числу, получим приведенную систему вычетов по модулю m . Обычно ее выделяют из системы наименьших неотрицательных вычетов по модулю m .

Приведенная система наименьших неотрицательных вычетов по модулю m обозначается U m .

Количество чисел в приведенной системе вычетов по модулю m , очевидно, равно φ(m ).

Пример :

Приведенная система вычетов по модулю 15 есть {1; 2; 4; 7; 8; 11; 13; 14}. Заметим, что φ(15)=(5–1)∙(3–1)= 8 и действительно, в приведенной системе вычетов по модулю 15 ровно 8 элементов.

Утверждение 1

Любые φ(m ) чисел, попарно несравнимых по модулю m и взаимно простых с m , образуют приведенную систему вычетов.

(Доказательство очевидно как в утверждении 1 пункт 2)

Утверждение 2

Если (a , m ) = 1, x пробегает приведенную систему вычетов по модулю m , то ax тоже пробегает приведенную систему вычетов по модулю m . (Доказательство очевидно как в утверждении 2 пункт 2).

Обратный элемент.

Говорят, что элемент b называется обратным к a по модулю m , если a∙b ≡1(mod m ), и пишут b a –1 (mod m ).

Вообще, классическая теория чисел не нуждается в таком понятии как обратный элемент, в чем можно убедиться, ознакомившись, например, с . Однако криптология использует системы вычетов как в теоретико-числовом, так и в алгебраическом аспекте, а потому, для удобства изложения алгебраических основ криптологии, мы вводим понятие обратного элемента.

Возникает вопрос – для всех ли элементов по данному модулю m существует обратный (по умножению), и если для каких-то элементов обратный существует, как его найти?

Для ответа на этот вопрос воспользуемся расширенным алгоритмом Евклида. Рассмотрим сначала взаимно простые число a и модуль m . Тогда, очевидно, (a ,m )=1. Расширенный алгоритм Евклида позволяет получить числа x и y , такие, что ax+my= (a ,m ), или, что то же самое, ax+my =1. Из последнего выражения получаем сравнение ax+my ≡1(mod m ). Поскольку my ≡0(mod m ), то ax ≡1(mod m ), а значит полученное с помощью расширенного алгоритма Евклида число x как раз и есть искомый обратный элемент к числу a по модулю m .

Пример.

a =5, m =7. Требуется найти a -1 mod m .

Воспользуемся расширенным алгоритмом Евклида.

Обратный ход:

1=5–2∙2=5–(7–5∙1)∙2=5∙3–7∙2.

x =3, y =–2.

5 -1 ≡3(mod 7)

Проверка: 5∙3=15. 15≡1(mod 7).

Действительно, 3 является обратным элементом к 5 по модулю 7.

Итак, конструктивным образом убедились в том, что для чисел, взаимно простых с модулем, существует обратный по этому модулю. А существуют ли обратные элементы для чисел, не являющихся с модулем взаимно простыми?

Пусть (a ,m )=d ≠1. Тогда a и m представимы в виде a =d a 1 , m =d m 1 . Допустим, что для a существует обратный элемент по модулю m, то есть b : a b ≡1(modm ). Тогда a b= m k +1. Или, что то же самое, d a 1 ∙b= d m 1 ∙k +1. Но тогда по теореме 2 из §1 п.1, в силу того, что и левая часть данного уравнения, и первое слагаемое в правой части делятся на d , то d \1, а это не так, поскольку d ≠1. Пришли к противоречию, следовательно предположение о существовании обратного элемента неверно.

Классы вычетов. Системы вычетов

Краткие сведения из теории

Применяя теорему о делении с остатком можно множество целых чисел разбить на ряд классов. Рассмотрим пример. Пусть m = 6. Тогда имеем шесть классов разбиения множества целых чисел по модулю 6:

r = 1;

r = 2;

r = 3;

r = 4;

r = 5;

где через r обозначен остаток от деления целого числа на 6.

Напомним теорему о делении с остатком:

Теорема : Разделить число на число , , с остатком, значит, найти пару целых чисел q и r , таких, что выполняются следующие условия: .

Легко доказывается, что для любых целых чисел а и деление с остатком возможно и числа q и r определяются однозначно. В нашем примере полная система наименьших неотрицательных вычетов есть множество {0, 1, 2, 3, 4, 5}; полная система наименьших положительных вычетов – множество {0, 1, 2, 3, 4, 5}; полная система наименьших по абсолютной величине вычетов – множество {-2,-1, 0, 1, 2, 3}; приведённая система вычетов – множество {1,5}, так как ; фактор-множество

Один из методов выполнения арифметических операций над данными целыми числами основан на простых положениях теории чисел. Идея этого метода состоит в том, что целые числа представляются в одной из непозиционных систем – в системе остаточных классов. А именно: вместо операций над целыми числами оперируют с остатками от деления этих чисел на заранее выбранные простые числа – модули .

Чаще всего числа выбирают из множества простых чисел.

Пусть …, .

Так как в кольце целых чисел имеет место теорема о делении с остатком, т. е. где , то кольцо Z , по определению, является евклидовым.

Таким образом, в качестве чисел можно выбрать остатки от деления числа А на р i соответственно.

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n попарно несравнимых по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

Делении целых чисел a и m получается частное q и остаток r , такие что

a = m q + r, 0 r m-1. Остаток r называют ВЫЧЕТ ом по модулю m .

Например, для m = 3 и для m =5 получим:

a = m q + r, m = 3 a = m q + r, m = 5
0 = 3 + 0 0 = 5 + 0
1 = 3 + 1 1 = 5 + 1
2 = 3 + 2 2 = 5 + 2
3 = 3 + 0 3 = 5 + 3
4 = 3 + 1 4 = 5 + 4
5 = 3 + 2 5 = 5 + 0
6 = 3 + 0 6 = 5 + 1
7 = 3 + 1 7 = 5 + 2

Если остаток равен нулю (r =0 ), то говорят, что m делит a нацело (или m кратно a ), что обозначают m a , а числа q и m называют делителями a . Очевидно 1 a и a a . Если a не имеет других делителей, кроме 1 и а , то а – простое число, иначе а называют составным числом. Самый большой положительный делитель d двух чисел a и m называют наибольшим общим делителем (НОД) и обозначают d = (a,m). Если НОД (a,m)= 1 , то a и m не имеют общих делителей, кроме 1 , и называются взаимно простыми относительно друг друга.



Каждому ВЫЧЕТ у r = 0, 1, 2,…, m-1 соответствует множество целых чисел a, b, … Говорят, что числа с одинаковым ВЫЧЕТ ом сравнимы по модулю и обозначают a b(mod m) или (a b) m .

Например, при m = 3 :

Например, при m = 5 :



Числа а , которые сравнимы по модулю m , образуют класс своего ВЫЧЕТа r и определяются как a = m q + r.

Числа а тоже называют ВЫЧЕТами по модулю m . НеотрицательныеВЫЧЕТы а = r (при q=0 ), принимающие значения из интервала , образуют полную систему наименьших вычетов по модулю m.

ВЫЧЕТы а , принимающие значения из интервала [-( ,…,( ] , при нечетном m или из интервала [- при четном m образуют полную систему абсолютно наименьших ВЫЧЕТ ов по модулю m.

Например, при m = 5 классы наименьших вычетов образуют

r = 0, 1, 2, 3, 4, a = -2, -1, 0, 1, 2. Обе приведенные совокупности чисел образуют полные системы вычет ов по модулю 5 .

Класс ВЫЧЕТов , элементы которого взаимно просты с модулем m

называют приведенным. Функция Эйлера определяет сколько ВЫЧЕТов из полной системы наименьших вычетов по модулю m взаимно просты с m . При простом m=p имеем = p-1.

Определение . Максимальный набор попарно несравнимых по модулю m чисел, взаимно простых с m , называется приведённой системой вычетов по модулю m . Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера.

Определение. Любое число из класса эквивалентности є m будем называть вычет ом по модулю m . Совокупность вычет ов, взятых по одному из каждого класса эквивалентности є m , называется полной системой вычет ов по модулю m (в полной системе вычет ов, таким образом, всего m штук чисел). Непосредственно сами остатки при делении на m называются наименьшими неотрицательными вычет ами и, конечно, образуют полную систему вычет ов по модулю m . Вычет r называется абсолютно наименьшим, если ïrï наименьший среди модулей вычет ов данного класса.

Пример . Проверить, образуют ли числа 13, 8, - 3, 10, 35, 60 полную систему вычетов по модулю m=6.

Решение : По определению числа образуют полную систему вычетов по модулю m , если их ровно m и они попарно несравнимы по модулюm .

Попарную несравнимость можно проверить, заменив каждое число наименьшим неотрицательным вычетом; если повторений не будет, то это полная система вычетов.

Применим теорему о делении с остатком: a = m q + r.

13 = 6 2 + 1 13 1(mod 6); 8 = 6 1 + 2 8 2(mod 6);

3 = 6 (-1) + 3 -3 3(mod 6); 10 = 6 1 + 4 10 4(mod 6);

35 = 6 5 + 5 35 5(mod 6); 60 = 6 10 + 0 60 0(mod 6).

Получили последовательность чисел: 1, 2, 3, 4, 5, 0, их ровно 6, повторений нет и они попарно несравнимы. То есть, они образуют полную систему вычетов по модулю m = 6.

Пример . Заменить наименьшим по абсолютной величине, а также наименьшим положительным вычетом 185 по модулю 16.

Решение. Применим теорему о делении с остатком:

185 = 16 11 + 9 185 9(mod 16).

Пример. Проверить, образуют ли числа (13, -13, 29, -9) приведенную систему вычетов по модулю m=10.

Решение: Всякая приведённая система вычетов по модулю m содержит элементов, где - функция Эйлера. В нашем случае =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость: =4, ибо среди натуральных чисел только 1, 3, 7, 9 взаимно просты с 10 и не превосходят его. То есть, возможно, что эти четыре числа составляют искомую систему. Проверим эти числа на их попарную несравнимость:m .

Вариант 1. a = 185, m = 12; Вариант 2. a = 84, m = 9;

Вариант 3. a = 180, m = 10; Вариант 4. a = 82, m = 9;

Вариант 5. a = 85, m = 11; Вариант 6. a = 84, m = 8;

Вариант 7. a = 103, m = 87; Вариант 8. a = 84, m = 16;

Вариант 9. a = 15, m = 10; Вариант 10. a = 81, m = 9;

Вариант 11. a = 85, m = 15; Вариант 12. a = 74, m = 13;

Вариант 13. a = 185, m = 16; Вариант 14. a = 14, m = 9;

Вариант 15. a = 100, m = 11; Вариант 16. a = 484, m = 15;

Вариант 17. a = 153, m = 61; Вариант 18. a = 217, m = 19;

Вариант 19. a = 625, m = 25; Вариант 20. a = 624, m = 25;

Задание 3. Записать полную и приведенную систему наименьших

В частности, будем иметь (p a) = p a - p a-1 , (p) = p-1.

Примеры. (60) = 60

(81) = 81-27 = 54

Мультипликативная функция

Функция (а) называется мультипликативной, если она удовлетворяет двум следующим условиям:

Эта функция определена для всех целых положительных a и не равна нулю по меньшей мере при одном таком a.

Для любых положительных взаимно простых a 1 и a 2 имеем:

(а 1 a 2) = (а 1) (а 2) .

Основные понятия теории сравнений

Свойства сравнений

Мы будем рассматривать целые числа в связи с остатками от деления их на данное целое положительное m, которое назовём модулем.

Каждому целому числу отвечает определённый остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются равноостаточными по модулю m.

Сравнимость чисел a и b по модулю m записывается:

Сравнимость чисел a и b по модулю m равносильна:

Возможности представить a в виде a = b + mt, где t - целое.

Делимости a b на m.

Действительно, из a b (mod m) следует

a = mq + r, b = mq 1 + r, 0<= r

откуда a - b = m (q - q 1), a = b + mt, t = q - q 1 .

Обратно, из a = b + mt, представляя b в виде

b = mq 1 + r , 0 <=r

выводим a = mq + r, q = q 1 + t , т.е. a b (mod m).

Оба утверждения доказаны.

Два числа, сравнимые с третьим, сравнимы между собой.

Сравнения можно почленно складывать.

Действительно, пусть

A 1 b 1 (mod m) , a 2 b 2 (mod m) , …, a k b k (mod m) (1).

Тогда a 1 = b 1 + mt 1 , a 2 = b 2 + mt 2 , …, a k = b k + mt k (2),

Откуда a 1 + a 2 + … + a k = b 1 + b 2 + … + b k + m (t 1 + t 2 + … + t k), или

a 1 + a 2 + … + a k b 1 + b 2 + … + b k (mod m).

Сравнения можно почленно перемножать.

Рассмотрим (1) и (2). Перемножая почленно равенства (2), получим:

a 1 a 2 …a k b 1 b 2 …b k + mN,

где N - целое.

Отсюда: a 1 a 2 …a k b 1 b 2 …b k (mod m).

Обе части сравнения можно возвести в одну и ту же степень.

Обе части сравнения можно умножить на одно и то же целое число.

Действительно, перемножив сравнение a b (mod m) с очевидным сравнением k k (mod m), получим ak bk (mod m).

Обе части сравнения можно разделить на их общий делитель, если последний взаимно прост с модулем.

Действительно, из a b (mod m), a = a 1 d , b = b 1 d , (d, m) = 1 следует, что разность a - b, равная (a 1 - b 1)d, делится на m, т. е. a 1 b 1 (mod m) .

Вычеты. Полная и приведенная системы вычетов

Числа равноостаточные, или, что то же самое, сравнимые по модулю m, образуют класс чисел по модулю m.

Из такого определения следует, что всем числам класса отвечает один и тот же остаток r, и мы получим все числа класса, если в форме mq + r заставим q пробегать все целые числа.

Соответственно m различным значениям r имеем m классов чисел по модулю m.

Любое число класса называется вычетом по модулю m по отношению ко всем числам того же класса. Вычет, получаемый при q = 0, равный самому остатку r, называется наименьшим неотрицательным вычетом.

Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m. Чаще всего в качестве полной системы вычетов употребляют наименьшие неотрицательные вычеты 0, 1, ..., m-1 или также абсолютно наименьшие вычеты. Последние, как это следует из вышеизложенного, в случае нечетного m представляются рядом

1, 0, 1, ...,

а в случае чётного m каким-либо из двух рядов

1, 0, 1, ...,

1, 0, 1, ..., .

Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Действительно, будучи несравнимы, эти числа тем самым принадлежат к различным классам, а так как их m, т.е. столько же, сколько и классов, то в каждый класс наверно попадёт по одному числу.

Если (a, m) = 1 и x пробегает полную систему вычетов по модулю m, то ax + b, где b - любое целое, тоже пробегает полную систему вычетов по модулю m.

Действительно, чисел ax +b будет столько же, сколько и чисел x, т.е. m. Согласно предыдущему утверждению остаётся, следовательно, только показать, что любые два числа ax 1 + b и ax 2 + b, отвечающие несравнимым x 1 и x 2 , будут сами несравнимы по модулю m.

Но допустив, что ax 1 + b ax 2 + b (mod m), мы придём к сравнению ax 1 = ax 2 (mod m), откуда, вследствие (a, m) = 1, получим

x 1 x 2 (mod m),

что противоречит предположению о несравнимости чисел x 1 и x 2 .

Числа одного и того же класса по модулю m имеют с модулем один и тот же общий наибольший делитель. Особенно важны классы, для которых этот делитель равен единице, т.е. классы, содержащие числа, взаимно простые с модулем.

Взяв от каждого такого класса по одному вычету, получим приведённую систему вычетов по модулю m. Приведённую систему вычетов, следовательно, можно составить из чисел полной системы, взаимно простых с модулем. Обыкновенно приведённую систему вычетов выделяют из системы наименьших неотрицательных вычетов: 0, 1, ..., m-1. Так как среди этих чисел число взаимно простых с m есть (m), то число чисел приведённой системы, равно как и число классов, содержащих числа, взаимно простые с модулем, есть (m).

Пример. Приведённая система вычетов по модулю 42 будет 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

Любые (m) чисел, попарно несравнимые по модулю m и взаимно простые с модулем, образуют приведённую систему вычетов по модулю m.

Действительно, будучи несравнимыми и взаимно простыми с модулем, эти числа тем самым принадлежат к различным классам, содержащим числа, взаимно простые с модулем, а так как их (m), т.е. столько же, сколько и классов указанного вида, то в каждый класс наверно попадёт по одному числу.

Если (a, m) = 1 и x пробегает приведённую систему вычетов по модулю m, то ax тоже пробегает приведённую систему вычетов по модулю m.

Действительно, чисел ax будет столько же, сколько и чисел x, т.е. (m). Согласно предыдущему свойству остаётся, следовательно, только показать, что числа ax по модулю m несравнимы и взаимно просты с модулем. Первое следует из свойства сравнений (если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m) для чисел более общего вида ax + b, второе же следует из (a, m) = 1, (x, m) = 1.

Теоремы Эйлера и Ферма

Теорема Эйлера (2. 5. 3. 1).

При m>1 и (a, m) = 1 имеем a (m) 1 (mod m).

Доказательство. Действительно, если x пробегает приведённую систему вычетов

x = r 1 , r 2 , ..., r c ; c = (m),

составленную из наименьших неотрицательных вычетов, то наименьшие неотрицательные вычеты 1 , 2 , ..., с чисел ax будут пробегать ту же систему, но расположенную, вообще говоря, в ином порядке (1).

Перемножая почленно сравнения

ar 1 1 (mod m), ar 2 2 (mod m), ..., ar c c (mod m),

получим а с 1 (mod m).

Теорема Ферма (2. 5. 3. 2).

При p простом и а, не делящимся на p, имеем

a p-1 1 (mod p). (2)

Доказательство. Эта теорема является следствием теоремы Эйлера при m = p. Теореме Ферма можно придать более удобную форму, умножая обе части сравнения (2) на а, получим сравнение a p a (mod p), справедливое уже при всех целых а, так как оно верно и при а, кратном p. Теорема доказана.

Теорема (2. 5. 3. 3). Если n = pq, (p и q - отличные друг от друга простые числа), то (n) = (p-1)(q-1).

Теорема (2. 5. 3. 4). Если n = pq, (p и q отличные друг от друга простые числа) и x простое относительно p и q, то x (n) = 1 (mod n).

или же любые последовательные p числа.

Данная система называется полною системою чисел, не сравнимых по модулю p или же полною системою вычетов по модулю p . Очевидно, что всякие p последовательных чисел образуют такую систему.

Все числа, принадлежащих к одному классу, имеют много общих свойств, следовательно по отношению к модулю их можно рассматривать как одно число. Каждое число, входящее в сравнение как слагаемое или множитель, может быть заменено, без нарушения сравнения, числом, сравнимым с ним, т.е. с числом, принадлежащим к одному и тому же классу.

Другой элемент, который является общим для всех чисел данного класса, является наибольший общий делитель каждого элемента этого класса и модуля p .

Пусть a и b сравнимы по модулю p , тогда

Теорема 1. Если в ax+b вместо x подставим последовательно все p членов полной системы чисел

Поэтому все числа ax+b , где x =1,2,...p -1 не сравнимы по модулю p (в противном случае, числа 1,2,...p -1 были бы сравнимы по модулю p .

Примечания

1) В данной статье под словом число будем понимать целое число.

Литература

  • 1. К.Айрленд, М.Роузен. Классическое введение в современную теорию чисел.− М:Мир, 1987.
  • 2. Г.Дэвенпорт. Высшая арифметика.− М:Наука, 1965.
  • 3. П.Г. Лежен Дирихле. Лекции по теории чисел. − Москва, 1936.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама